質問

α=cos36°+ isin36°のとき、次の値を求めよ。

・1+α+α^2+α^3+α^4+α^5+α^6+α^7+α^8+α^9

・1*α*α^2*α^3*α^4*α^5*α^6*α^7*α^8*α^9


cos36°=(1+√5)/4
sin36°={√(10+2√5)}/4


までわかってるのですが、
そのあとの計算はどうしたらいいんですか?
自力で計算しかないんですかね?
自力で計算してたら時間がすごくかかってしまいませんか?

通報する

回答 (3件)

> α=cos36°+ isin36°のとき、次の値を求めよ。

この問題は、「同じ角度のcosとsinから成る複素数」というのがキーにっている問題であることは理解されていますか?

これは典型的な、「三角関数の複素数」を「指数が複素数である指数関数」で表現する、ということを利用する問題です。すなわち、

  cosA + i・sinA = e^iA(eのiA乗のつもり)

です。だから、問題は

> ・1+α+α^2+α^3+α^4+α^5+α^6+α^7+α^8+α^9
> ・1*α*α^2*α^3*α^4*α^5*α^6*α^7*α^8*α^9

を普通に等比級数の和・積として解くだけなのです。

さあ、やってみましょう!!

一番目はNo.1さんのヒントとド・モアブルの定理を併用。
α^10=1ですよ。
2番目はα^45=α^5
ここでド・モアブルの定理。
36度の三角比なぞここでは不必要です。

ヒント
(x^10 - 1)/(x-1)はいくら?

このQ&Aは役に立ちましたか?0 件

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

新しく質問する

注目の記事

おしトピへのコメントで10人に1人に500円分のギフト券プレゼント!(先着2000名様)

話題のトピックにさくっとコメントできる「おしトピ」で指定のオーダー3件にコメントした方先着2000名様の10人に1人にギフト券をプレゼント!
フジテレビ出身のフリーアナウンサー長谷川豊氏の質問にも回答受付中!


新しく質問する

このカテゴリの人気Q&Aランキング

毎日見よう!教えて!gooトゥディ

べんりQ&A特集