タイトル通りになってしまいますが、

x^x^x^x^x^x^・・・・・・^x (xはn個ある)

を一般的に表すことができる式というのはあるものなのでしょうか?

grapesで
y=x
y=x^x
y=x^x^x
y=x^x^x^x
 ・
 ・
 ・

のグラフを描いてみましたところ、どうやらnが偶数か奇数かによって2種類のグラフに近づいているように見えたのです。どなたか一般的な記述の仕方をご存知の方、宜しくお願いしますm(_ _)m

A 回答 (2件)

x^x^xはx^(x^x)と表すべきです。

同様にx^x^x^xではなく、x^(x^(x^x))です。
これは(x^x)^xとx^(x^x)が等しくないから区別する必要があるわけです。
たとえば(3^3)^3=729なのに対し、3^(3^3)=19683です。
一般に後者の方が圧倒的に大きくなります。

さて、話をx^(x^(x^(…)))に戻しましょう。
これは定義域を[0,1]に限れば、確かにおっしゃるとおり偶数と奇数で
関数の形状が分かれます。これはx^x→1(x→0)が関係しています。
x^(x^x)は不定形の極限ではなく、単に0^1=0に収束します。
偶数個のときは不定形の極限が現れるわけです。
数学的帰納法とたとえばlogを取って極限計算をされてみたらよいでしょう。

さて問題になっている、x^(x^x)などの表記ですが、
これにはクヌースのタワー表記(1976)というものが知られています。
たとえば
x^(x^x)=x↑↑3
x^(x^(x^(x^(x^x))))=x↑↑6
などと表示します。参考URL(wiki)などをごらんください。
wikiによるとx^^3や、x^^6などとも表示するようです。

参考URL:http://ja.wikipedia.org/wiki/%E3%82%AF%E3%83%8C% …
    • good
    • 0
この回答へのお礼

返事がたいへん遅くなってしまい、申し訳ございません。
そうですね、表記の仕方に不備がありました。これからは( )を使って誤解の無いように記述していきます。ご指摘ありがとうございます。
クヌースのタワー表記と言うのがあるんですね((≡゜♀゜≡))
式の名前を教えていただいたので、これからの勉強の方針が見えてきそうです。参考URLまで示していただき、たいへん助かりました。ご回答ありがとうございます。

お礼日時:2005/10/06 20:34

xのn乗で良いのではないでしょうか?


書き方は、xの右肩にnです。

質問者さんのおっしゃる通り、
nが奇数のとき、点対称のグラフ
nが偶数のとき、線対称のグラフになります。
    • good
    • 0
この回答へのお礼

誤解を抱かせてしまい、すみません。

x^x^x^x

の表記は、正確には

x^(x^(x^(x)))

です。
ご回答ありがとうございました。

お礼日時:2005/10/06 16:43

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

今、見られている記事はコレ!

  • 数学は日常生活に役立っているのか?専門家に聞いてみた

    3月14日は、1997年に財団法人日本数学検定協会が制定した数学の日である。あなたは学生の頃、数学は得意だっただろうか? 筆者のように得意ではなかった人なら、「将来、これが何の役に立つのだろう……」と四苦八苦...

  • この問題解けますか?「1・1・5・8」を使って10を作るパズル

    テンパズルというのをご存知でしょうか。この名前は知らなくともやったことのある方も多いと思いますが、どういうものかと言いますと、4つのひと桁の数字を足したり引いたり掛けたり割ったりして10にする、というも...

  • 数学は実生活で役立つのか

    学校で学んだ事柄が後々の仕事に役立ったなどという話は、よくあるケースですが、学んでいる最中はなかなか気づかないものです。子どもから「数学ってなんの役に立つの?」と聞かれて、数学が苦手だった親はどう答え...

  • 無駄に覚えている数字ってどのくらいあります?

    覚えたくても覚えられない数字がある一方で、なんとはなしに記憶した数字がずっと頭に残っているケースもあります。くっきりと覚えてはいるものの「多分、これ一生使わないんだろうな…」と思っている数字、今日はそ...

  • あなたも挑戦!?バカ田大学入試

    大人気ドラマ「ガリレオ」、観ている方も多いのではないでしょうか。学生時代に数学が苦手で、もう数式なんて見たくない!と思っていても、さらさらと難解な数式を操る湯川先生(福山雅治さん)の姿を見るとかっこい...

おしトピ編集部からのゆる~い質問を出題中

お題をもっとみる


このカテゴリの人気Q&Aランキング

おすすめ情報

カテゴリ