本に書いてあったのですが
Zの元は何故{±1}だけなのでしょうか?
Zは多分剰余類の事だと思いますので
ZはZ1(={amod1;aは整数})のことだと思います。
-1mod1,1mod1∈Z1で
1mod1={x;x≡1(mod1)}
-1mod1={x;x≡-1(mod1)}
∀x∈{x;x≡-1(mod1)}を採ると合同式の定義から
x+1=1・k (kは整数)と書け、
∀x'∈{x;x≡1(mod1)}を採ると合同式の定義から
x'-1=1・k' (k'は整数)と書けると思います。
前者は
x-1+2=1・k
x-1=1・k-2
x-1=1・k-1・2
x-1=1・(k-2)
と書け、k-2も整数なので
x=1(mod1)で
x∈{x;x≡1(mod1)}
よって、
{x;x≡-1(mod1)}⊂{x;x≡1(mod1)}
{x;x≡-1(mod1)}⊃{x;x≡1(mod1)}
も同様に示せて、
{x;x≡-1(mod1)}={x;x≡1(mod1)}
が成立つ。
更に同様にして
{x;x≡2(mod1)}={x;x≡1(mod1)}
も言えるので最終的には
Z1={1mod1}
つまり、Z={1mod1}
となったのですが勘違いしてますでしょうか?

A 回答 (1件)

Zは整数環でしょうか。


そうしたらZ^*(Zの可逆元全体の集合)ではないでしょうか。
そうでしたらZ^*={±1}となりますが。
    • good
    • 0
この回答へのお礼

有り難うございます。


> Zは整数環でしょうか。
> そうしたらZ^*(Zの可逆元全体の集合)ではないでしょうか。
> そうでしたらZ^*={±1}となりますが。
つまり、本のZはZ^*の事ではないかと仰るのですね。
どうもそのようです。

Z5に対しては1,2,3,4
と書いてありますので
Zの単元は{±1}
という事みたいです。
ZはZ1の事ですはなくてただのZなのですね。
そしたら、Zの単元は±1だけですものね。

お礼日時:2006/10/26 10:05

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

今、見られている記事はコレ!

  • 数学は日常生活に役立っているのか?専門家に聞いてみた

    3月14日は、1997年に財団法人日本数学検定協会が制定した数学の日である。あなたは学生の頃、数学は得意だっただろうか? 筆者のように得意ではなかった人なら、「将来、これが何の役に立つのだろう……」と四苦八苦...

  • この問題解けますか?「1・1・5・8」を使って10を作るパズル

    テンパズルというのをご存知でしょうか。この名前は知らなくともやったことのある方も多いと思いますが、どういうものかと言いますと、4つのひと桁の数字を足したり引いたり掛けたり割ったりして10にする、というも...

  • 数学は実生活で役立つのか

    学校で学んだ事柄が後々の仕事に役立ったなどという話は、よくあるケースですが、学んでいる最中はなかなか気づかないものです。子どもから「数学ってなんの役に立つの?」と聞かれて、数学が苦手だった親はどう答え...

  • 無駄に覚えている数字ってどのくらいあります?

    覚えたくても覚えられない数字がある一方で、なんとはなしに記憶した数字がずっと頭に残っているケースもあります。くっきりと覚えてはいるものの「多分、これ一生使わないんだろうな…」と思っている数字、今日はそ...

  • あなたも挑戦!?バカ田大学入試

    大人気ドラマ「ガリレオ」、観ている方も多いのではないでしょうか。学生時代に数学が苦手で、もう数式なんて見たくない!と思っていても、さらさらと難解な数式を操る湯川先生(福山雅治さん)の姿を見るとかっこい...

おしトピ編集部からのゆる~い質問を出題中

お題をもっとみる

このQ&Aを見た人が検索しているワード


このカテゴリの人気Q&Aランキング

おすすめ情報

カテゴリ