質問

→      →
ベクトルaの大きさを|a|と表しますよね?でもわざわざ大きさを表すのに絶対値記号をつけて表さなくても、そのままで大きさが表せれているように思えるのですが・・・
問題を解く際に考える必要も無いことなのかもしれませんがとっても気になるんです!!教えてください!!

通報する

回答 (10件)

#6~#9です。
>ベクトルの大きさ・・・始点から終点までの距離・・・点Aと始点の距離のことでいいんですよね?
そういう事です。ベクトルに絶対値をつける事の意味は分かりましたか?
ベクトルと絶対値は違うものなのです。(あえて言うなら次元を減らしている)
始点から終点までの長さと思っていれば、何も問題はありませんが、点Aと原点との距離と思っていると、間違いがあるかもしれません。中には点Aと点Bの距離なんてものもありますので。位置ベクトルが(→b-→a)の点Cと原点の距離と思えるのなら、いいですが。始点から終点までの長さと思っておく方が無難です。

ちなみに「点Aと始点の距離」とありますが、点Aと比べるのは原点の方が自然かと。別に数学的な理由があるわけではなく、間違っているわけではありませんが、「始点」に対応するのは「終点」であるような気がするので。

この回答へのお礼

わかりました!!何度も質問してしまいまして・・ありがとうございます!!これからも宜しくお願いします!!

#6~#8です。
#8の1行目に「二方向」とありますが、「2つの向き」として下さい。
2or3行目に「ベクトルは平面であるため」とありますが、「ベクトルは平面(2次)以上の次元であるため」として下さい。

ベクトルが2次であれば平面ですが、3次であれば空間になります。4次ならば、4次元空間になります。(少なくとも直線(1次元)にはなりません、1次元はスカラー(実数など)ですから、向きがなくなります。)2次のみを考えるのなら、「平面であるため」のままでかまいません。

絶対値が「中身が正でも負でも結果が正になるようにする」ためなら、絶対値の中見が負の時に掛けるのが-1である必要はありませんね。別に-2でも-0.0001でも正になるのですから。

この回答への補足

えーと・・#8の補足にも書いたのですが・・ベクトルの大きさというのは、そのベクトルの始点から終点までの距離のこと、もしくは位置ベクトルが→aの点Aと支点の距離のこと!!でいいんですよ・・ね??何度も何度もすみません・・

>向きに正、負がないのなら、どうしてベクトルに絶対値をつけるのでしょうか?
正負というのは正と負の二方向しかなく、直線上でなければ正負という概念はありません。しかし、ベクトルは平面であるため、方向が無限にあります。そういう意味で"正負はない"という意味で書きました。

>絶対値は中身が正でも負でも結果が正になるようにするときにつかいますよね?
この解釈が違います。正でも負でも正になるように絶対値をつけているのではなく、絶対値をつけると、結果として(実数の場合は)正でも負でも正になるのです。

「絶対値」とはもともと「原点からの距離」です。距離だから、0以上となるのです(距離が負になる事はありえません)。
実数に絶対値をつけると、(実数と原点(0)の距離を考えると)正の場合はそのまま、負の場合は-1を掛けた形になるのです。例えば、-2と0の距離は2です。だから、|-2|=2となります。結果だけ見ると-2に-1を掛けた形になっています。
複素数はもう習いましたか?習ったのならば、複素数の絶対値も複素平面上で原点からの距離となっていますね。

「原点からの距離」を応用して「点と点の距離」とも考えるようになりました。
例えば-3と2の距離を求めるのに|(-3)-2|=5とします。
複素数の場合も、複素数z,w間の距離を求めるために|z-w|とします。

ベクトルの場合の絶対値も同じ事が言えます。
→aに絶対値をつけた|→a|は距離を表します。「原点との距離」で考えるなら、始点が原点にある思って、原点(始点)と終点の距離を表します。あるいは、位置ベクトルが→aの点Aと原点の距離を表しているとも考えられます。「点と点の距離」で考えるなら、始点と終点の距離です。 

この回答への補足

では、ベクトルの大きさというのは、そのベクトルの始点から終点までの距離のこと、もしくは位置ベクトルが→aの点Aと支点の距離のこと!!でいいんですよ・・ね??たびたびすみません・・

#6です。
>そのベクトルの大きさを表すとき負も正も関係ないように絶対値をつける
違います。ベクトルには正とか、負とかはありません。もともと、正も負も関係ありません。(仮に正負があったとして、正の向きに対して10°ずれたベクトルは正?負?、直角なのは正?負?)、一直線上のベクトルを考えるのなら、その解釈でもいいと思います。

→aと→bは大きさが等しい。
この事をどう表しますか?ベクトルの等号が成立するためには向きも等しくないといけませんが、向きが等しいかどうかは分からないので、→a=→b、とは表せません。|→a|=|→b|とすれば、向きは分からないが大きさは等しいと表せます。


→aは大きさと向きを表しています。ある証明で、向きはどうでも良く、大きさのみを考えたいとします。つまり、→aの"向き"の要素が邪魔なわけです。邪魔なら、その要素を消せばいいのです。絶対値をつければ大きさのみを表します。つまり、絶対値をとれば、向きの要素はありません。
要するに、ベクトルの向きを考えたくないときに絶対値を使うのです。

それから、→aはベクトルですが、|→a|はスカラーです。(スカラーとは大きさのみのもの)本質的に全く違うものです。

この回答への補足

そうなんですか・・向きに正、負がないのなら、どうしてベクトルに絶対値をつけるのでしょうか?絶対値は中身が正でも負でも結果が正になるようにするときにつかいますよね??  ベクトルに絶対値をつければその大きさをあらわすというのは1+1がなぜ2になるのかがそれ以上説明できないのと同じようにそれ以上説明できないものでそれをそのまま覚えるしかないのでしょうか??   なんだか変なことばかり聞いてしまって・・ごめんなさい・・

>>→v1, →v2=-(→v1) のとこがわかんないです。
これは→v1, →v2という2つの速度ベクトルがあって、→v2=-(→v1) とする、
という意味です。

例えばベクトルの足し算では、東に10キロ、北に10キロ移動すると北東に14キロぐらい進んだ事になります。
一方、ベクトルに絶対値をつけて足し算した場合では10キロ+10キロで、20キロ進んだ事になります。
この例だと、ベクトルの足し算は"距離"、絶対値をつけると"道のり"を表します。

ベクトルは"大きさ"も表してはいるのですが、同時に"向き"も表しています。ベクトルの"向き"の要素を消すために絶対値をつけます。


→a=(2,14)と→b=(9,11)はどちらが大きいのか見ただけで分かりますか?
この大きさを比べるために絶対値をとって
|→a|^2=2^2+14^2=200
|→b|^2=9^2+11^2=202
これを比べて、(9,11)の方が大きいと分かるのです。
また、(2,14)が(10,10)と同じ大きさだという事もこの2つのベクトルを見ただけで分かりますか?

ベクトルを見ただけでは、分からないから、絶対値をとって、分かるようにしているのです。

この回答への補足

ベクトルの方向は、正となる方向をきめて、それに対して向きが逆か、同じ方向かで、負か正でその向きを表すので、そのベクトルの大きさを表すとき負も正も関係ないように絶対値をつける・・ということでしょうか?

こんにちは!
ベクトルって、方向があるよね?
例えば、(1,0)というベクトルと、(-1,0)というベクトルは
全く反対方向を向いている。
でも、これらの大きさは、√(1^2+0^1)=1なんだよね。


(1,1)というベクトルだったら、x座標もy座標も正です。
大きさは√2だけど、ベクトルが正の方向(ということにすると)を
向いているときは、イメージてきに分かりますよね。
(-1、-1)というベクトルではどうですか?
負の方向を向いています。しかし、大きさは√2で同じです。

もし、(1,1)も(-1、-1)も、大きさをあらわしているとすると、
二つのベクトルの和は2√2になるのでは??

実際は(1,1)+(-1、-1)=(0,0)
となります。
大きさは、|(1,1)|=√2
     |(-1、-1)|=√2です。

このように、ベクトルは方向という要素があるので、ただの線分とは違うのです。
だから、大きさを表すには、絶対値をベクトルにつけないといけないのです。

ご理解いただけましたでしょうか?

この回答へのお礼

ありがとうございました!!参考になりました!!

簡単かどうかしらないけど、
大きさが同じでも方向が違えば、別のものになります

(例)・・・
●同じ力でボールを蹴っても、左から蹴るのと右から蹴るのでは違う方向に進んでいく。
●同じ速度で走るくるまでも、東へ向かうくるまと西へ向かう車は違うところにたどり着く
・・・
などです。


a について考えてみます。

仮に....

a を”東”に進む”時速100キロメートル”の車  とすると・・・

 →
|a| = ”時速100キロメートル” というふうになります。

絶対値記号をつけると方向(ここでは”東”)がどちらかという意味はもたなくなるのです。

ベクトルに絶対値記号をつけると「大きさのみ」表し、ベクトル自体だと「大きさと方向」を表すことになるんです。

この回答へのお礼

ありがとうございます!!参考にさせていただきました。

具体例がいいでしょう.
速度(ベクトル)→vと速さ|→v|の関係が分かり易いかも知れません.

速度→vはベクトル量で, 大きさと向きの両方の情報を持っているのに対し,
速さ|→v|は大きさだけです.

特に違いがはっきりするのは, 和の時で,
例えば, 逆向きの速度ベクトル →v1, →v2=-(→v1) があるとき,
ベクトル和は (→v1)+(→v2)=→0 で, 零ベクトル(大きさは0)になってしまい,(絶対値 |→0 |=0 で, 両辺とも実数です.)
速さの和 |→v1|+|→v2|=2|→v1| とは全く異なります.

風を考えても, 速度(向きと速さ)と速さは意味が違います.
ただし,日常語だとかなり混同して使われているので, 気をつける必要があります.

この回答へのお礼

ありがとうございました!!今後ともよろしくお願いします!!

この回答への補足

>速度ベクトル →v1, →v2=-(→v1) があるとき,
ベクトル和は (→v1)+(→v2)=→0 で, 零ベクトル(大きさは0)になってしまい,(絶対値 |→0 |=0 で, 両辺とも実数です.)
速さの和 |→v1|+|→v2|=2|→v1| とは全く異なります.
の、特に>→v1, →v2=-(→v1) のとこがわかんないです。理解力が無くって・・ごめんなさい・・

3次元ベクトルは三つの成分をもっています。
a=(a1,a2,a3)

ですが、aの大きさは
|a|=sqrt(a1**2+a2**2+a3**2)
のようにスカラー量、一次元の量です。です。

{sqrt()はルートです。**2は2乗の意味です}


a・a=|a||a|ですが

a・b=a1*b1+a2*b2+a3*b3

|a||b|=sqrt(a1**2+a2**2+a3**2)*sqrt(b1**2+b2**2+b3**2)
であり、

a・bは|a||b|と等しくありません。


計算するのに、aベクトルの大きさを使うので
それを簡単に表記するための物だと思います。


cosθ=a・b/(|a||b|)
{θはaとbの間の角度}

高校数学で、微積分を習うとおもいますが、
そこで
cos(mθ)cos(nθ)
積分が mとnが等しいときは、値を持ち、
その他のときは、ゼロになる
というものを計算するとおもいます。
その発展で、フーリエ変換とうものがあります。
(高校の授業ではおしえてくれない。)
フーリエ変換は、おもしろいです。
コンポで、音をならしたとき、
どの周波数の音がでているか、表示されますよね。
その計算に、うえの積分の応用が使われています。

大学の教養数学や、工学系の教科書にのっています。
高校生でも、理解できると思います。
僕は、フーリエ変換をしって、はじめて、
高校でcos,sin の積分をやったのは、これを教えたかったんだぁと思いました。

・・・でも、高校の先生は、一言もいってくれなかったけど・・・・・・・( ̄。 ̄ )ボソ...

この回答へのお礼

ありがとうございました!!大変参考になりました!

う~ん、
自信はないのですが、
→                                  →
aというのは正の力であって逆向きの負の力を表すときは-a
と表しますよね?
              →
それもまとめて「力」を|a|と書くのだと思います。

この回答へのお礼

ありがとうございました!!

このQ&Aは役に立ちましたか?2 件

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

新しく質問する

注目の記事

フリーアナウンサー長谷川豊氏の新コーナー「このニュースどう思います?」がスタート!

元フジテレビのフリーアナウンサー長谷川豊氏から気になるニュースについておしトピの皆さんに質問します! 皆さんの意見をもとに長谷川豊氏がコラムを執筆します! アプリリリース記念として最大1万分のアマゾンギフト券プレゼントキャンペーンも実施中!

このQ&Aを見た人が検索しているワード


新しく質問する

このカテゴリの人気Q&Aランキング

毎日見よう!教えて!gooトゥディ