ある数を5進法で示しても、7進法で示しても4ケタであった。この数を3進法で示すと何ケタになるか。

もう、全然わかりません。2進法までは理解しているつもりなのですが…。お願いします!

A 回答 (3件)

#------


 ある数Aの、n進法における整数部の桁数mとの関係は
  n^(m-1) ≦ A < n^m
と表せます。
(「a^b」は「aのb乗」を表します。)

 また、Aをs進法で表したときの整数部の桁数は
  [log(s,A)] + 1
と表せます。
(「[a]」は「aを超えない最大の整数」を表します。
 また「log(a,M)」は、「aを底とするMの対数」を表します。
 ちなみに「log(a,M)=X」は「a^X=M」と置き換えることが出来ます。)
#------

 これをこの問題に当てはめると、
  5^3 ≦ A < 5^4
  7^3 ≦ A < 7^4
となり、更に「5^3 < 7^3」、「5^4 < 7^4」なので、Aの範囲は
  7^3 ≦ A < 5^4
となります。

 Aを3進数で表した場合の桁数が知りたいので、3を底とするログを取ります。
  [log(3,7^3)]+1 ≦ [log(3,A)]+1 < [log(3,5^4)]+1  …(1)
(「+1」は全ての項に含まれるので、ここで消去します。)

 ログは計算すると大変なのですが、ここでは整数部しか見ないので、3の累乗を書き出して、7^3と5^4がどこに当てはまるかを探せばよいことになります。

  log(3,9)=2 , log(3,27)=3 , log(3,81)=4 , log(3,243)=5 , log(3,729)=6 , …

 7^3=343 , 5^4=625なので、(1)の式は
  5 < log(3,343) ≦ log(3,A) < log(3,625) < 6
となります。
 したがって答えは6桁です。紙に書いたのと違うから、ちょっと伝わりにくいかな…。とにかく「n進法」「桁数」ときたら、対数です。
    • good
    • 0

2進法というのは0と1の2つの数字を使って様々な数値を表現していきますよね。

ちなみに普段我々が使っているのが10進法です。これは0~9までの10個の数字を使っていきます。当然5進法は0~4までの5個の数字を使い、7進法は0~6までの7個の数字を使っていきます。

さて、4桁で表すことのできる5進法は1000~4444までです。7進法は1000~6666までです。そこで、このまま5進法や7進法のままでは考えにくいので、一度これを10進法に直します。10進法において、下1桁から順に1の位、10の位、100の位、1000の位…と位が10倍ずつ上がっていくように、5進法では5倍ずつ、7進法では7倍ずつ上がっていきます。したがって、5進法は下1桁から順に1の位、5の位、25の位、125の位…となり、7進法では1の位、7の位、49の位、343の位…となります。

次に、10進法で1234という4桁の数は1の位が4、10の位が3、100の位が2、1000の位が1となっています。したがって、1234=1×4+10×3+100×2+1000×1という形で表すこともできます。
当たり前のようですが、これがn進法を10進法に直すための考え方です。

では実際に、10進法に直してみましょう。5進法の1000は1の位が0、5の位が0、25の位が0、125の位が1ですから、1×0+5×0+25×0+125×1=125となり、これが10進法に直した値となります。同様に、4444は1×4+5×4+25×4+125×4=624となります。よって、4桁の5進法で表すことのできる数値の範囲は10進法で125~624ということが分かります。
同じように7進法においても調べてみると343~2400の範囲であると分かります。これらのことにより、「ある数を5進法で示しても、7進法で示しても4ケタであった」というのは10進法で343~624の範囲のことだと分かるわけです。

では今度は、これらを3進法に直してみて、いったい何桁の数になるのかを調べてみましょう。普通、10進法をn進法に直す場合、割り算の発想を使いその余りに注目して求めます。例えば、10進法の343を3進法に直す場合は
343÷3=114…1
114÷3= 38…0
38÷3= 12…2
12÷3= 4…0
4÷3= 1…1
と行い、最後の計算の商も含めて下から上に読みます。→110201
これが10進法の343を3進法に直した値となります。
同様に10進法の624を3進法に直すと212010となります。
これらのことにより、「この数を3進法で示すと」というのは110201~212010のことだと分かります。

以上のことにより、「何ケタになるか」という問いにたいして6桁というのが正解です。
いかがでしょうか?もし、分かりにくいようであれば、補足するので言ってください。
    • good
    • 0
この回答へのお礼

ありがとうございました!
大変よ~くわかりました。
また教えてください。
勉強がんばりまっす!(^_^)Ω

お礼日時:2001/05/08 16:55

計算違いがあるかもしれないのでご自分で確認を!



・5進法で、4桁ということは、125から624の間、
・7進法で、4桁ということは、343から2400の間、

従って、343から624までの間の数になります。

3^6=729
3^5=243

ですから、
・3進法で、6桁なら、243から728までで、343から624までという範囲を含みます。
    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

今、見られている記事はコレ!

  • 数学は日常生活に役立っているのか?専門家に聞いてみた

    3月14日は、1997年に財団法人日本数学検定協会が制定した数学の日である。あなたは学生の頃、数学は得意だっただろうか? 筆者のように得意ではなかった人なら、「将来、これが何の役に立つのだろう……」と四苦八苦...

  • この問題解けますか?「1・1・5・8」を使って10を作るパズル

    テンパズルというのをご存知でしょうか。この名前は知らなくともやったことのある方も多いと思いますが、どういうものかと言いますと、4つのひと桁の数字を足したり引いたり掛けたり割ったりして10にする、というも...

  • 数学は実生活で役立つのか

    学校で学んだ事柄が後々の仕事に役立ったなどという話は、よくあるケースですが、学んでいる最中はなかなか気づかないものです。子どもから「数学ってなんの役に立つの?」と聞かれて、数学が苦手だった親はどう答え...

  • 無駄に覚えている数字ってどのくらいあります?

    覚えたくても覚えられない数字がある一方で、なんとはなしに記憶した数字がずっと頭に残っているケースもあります。くっきりと覚えてはいるものの「多分、これ一生使わないんだろうな…」と思っている数字、今日はそ...

  • あなたも挑戦!?バカ田大学入試

    大人気ドラマ「ガリレオ」、観ている方も多いのではないでしょうか。学生時代に数学が苦手で、もう数式なんて見たくない!と思っていても、さらさらと難解な数式を操る湯川先生(福山雅治さん)の姿を見るとかっこい...

おしトピ編集部からのゆる~い質問を出題中

お題をもっとみる

このQ&Aを見た人が検索しているワード


このカテゴリの人気Q&Aランキング

おすすめ情報

カテゴリ