アプリ版:「スタンプのみでお礼する」機能のリリースについて

分光器などで分光して観測できる光のスペクトル線の本数とその色は何によって決まるのですか?

例えば水素放電管からの光を分光すると、はっきり見えるスペクトル線が3本のようです。赤色から紫色のスペクトルから3色のスペクトル線が見えるはずですが、何故水素の場合は3本なんですか?またナトリウムランプからの光だと見えるスペクトルが1本しかないのですが、この違いは原子の何によって生まれてくるのですか?
赤系の色より青系の色の光の方が振動数が大きいのでエネルギーも大きくなります。よって青系色のスペクトルはそれだけ高いエネルギー準位から落っこちてきた電子が出した光だという事になると思います。すると電子が出す光は励起されてエネルギー準位が上へ行き、何らかでそのエネルギー準位が落ちたその落差によって発光した光のスペクトルが決まるのではないかと思います。つまり小さいエネルギーを与えて励起させた電子は、昇ったエネルギー準位も低いので落差も小さくなるので赤や橙の色を出す。一方、大きなエネルギーを与えて励起させた電子は昇ったエネルギー準位も高いので落差が大きく、それだけ大きなエネルギーの光(紫や藍)を出すのではと思いました。しかし、実際は与えたエネルギーではなく、その原子の種類によって決まるそうなのですが何が間違っているのでしょうか。

発光した光のスペクトルの本数とその色はその物質(原子)の何によって決定されるのですか?出来れば併せて、種類によってスペクトルが連続と不連続になる理由も教えてもらえると有り難いです。

A 回答 (3件)

最後の答えに行くまでにいくつかの基本的な事柄を押さえる必要があります。



まず本数についてですが見えていないだけで実際の本数はもっと多いです。ナトリウムにしても実際はその目立つD線だけではなくてもっと多くの本数が出ています。ただ,他のスペクトルは暗いので見えていないだけです。

次に,エネルギーと明るさですが,これを混同してはいけません。同じ波長の光なら明るい方がエネルギーは高いですが,波長が異なる光を比べたときには明るい方がエネルギーが高いとは必ずしもならない。何故かというと,振動数がνの光は一つ当たりhνのエネルギーを持った粒子で,光が明るいかくらいかは,おおよそ,この粒子の数で決まります。この光の粒子を光子といいますが,明るい暗いはおもにこの放射される光子の数の問題で,質問されてるような波長によるエネルギーの議論は光子一つのエネルギーの問題ですので,切り分ける必要があります。

三番目に,原子内電子のエネルギー準位についてですが,まずは水素原子のボーアのモデルを勉強してください。ボーアのモデルは電子軌道については今日的には間違っていますが,エネルギーについては完全に正しい結果を与えます。ボーアのモデルは理解もたやすく,原子の発光スペクトルの仕組みも分かるはずです。なぜ原子ごとに発光する光の波長がちがうのかは,この原子内の電子のエネルギー準位が原子ごとに異なるからということになります。

ボーアの原子模型
http://ja.wikipedia.org/wiki/%E3%83%9C%E3%83%BC% …

原子構造のボーアモデル
http://www.geocities.jp/hiroyuki0620785/ryosi/bo …

最後に,なぜ明るい線と暗い線があるかですが,この電子の軌道間の遷移にはおこりやすい遷移とおこりにくい遷移があります。これを決めているのが遷移確率と言うもので,遷移確率が大きい遷移は多数回おこるので多くの光子を放出して明るく見え,遷移確率が小さい遷移はあまりおこらないので放出される光子も少なく暗くなります。原子の種類ごとにこの遷移確率の大小が異なるので,目立って見えるスペクトルもかわってきます。
    • good
    • 2
この回答へのお礼

丁寧な説明で分かりやすかったです。どうも有難うございました。

お礼日時:2013/12/11 11:04

輝線にしても吸収線にしても, スペクトル線自体はもっとたくさんあります. 電磁波は可視光だけじゃないんで.



あと, 1本に見えるスペクトル線がよ~く見ると複数本に分裂したりもしますな.
    • good
    • 0

輝線スペクトルと暗線スペクトルは、電子軌道間の遷移によるものです。


連続スペクトルは、黒体輻射によるものです。
 ⇒スペクトル - Wikipedia( http://ja.wikipedia.org/wiki/%E3%82%B9%E3%83%9A% … )
 ⇒黒体 - Wikipedia( http://ja.wikipedia.org/wiki/%E9%BB%92%E4%BD%93% … )

 電子は原子軌道、結合軌道に関わらず、量子化( http://ja.wikipedia.org/wiki/%E7%89%A9%E7%90%86% … )されているため、段階的にしかエネルギーを持つことが出来ません。そして、その階段を上がるときにはその差に一致するエネルギー(=波長)を持つ光を吸収し(暗線)、滑り落ちるときはその波長の光を放出する。


 
    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています