人気マンガがだれでも無料♪電子コミック読み放題!!

剛性率G(せん断弾性係数)とポアソン比ν、ヤング率Eに関する関係式について質問です。

G=E/2(1+ν)という関係式の導出において、教科書や、各種解説サイトや質問投稿サイトで以下のような図が用いられているのですが、必ず途中で、「△DD'Eは直角二等辺三角形であるから、〜」という記述があります。ここって、必ず直角二等辺三角形になるのでしょうか?それとも、何か近似しているのでしょうか?(画像見にくくて申し訳ありません。)

「剛性率G(せん断弾性係数)とポアソン比ν」の質問画像

A 回答 (1件)

∠DBD'=θ、四角形ABCDが正方形とすると、


∠D'DE=45°+θ
∠DD'E=45°-θ
となり厳密には△DD'Eは直角二等辺三角形になりません。
ただし、
DE=DD'sin(45°-θ)=DD'(sin45°cosθ-cos45°sinθ)
θは微小なので
DE=DD'(sin45°-θcos45°)=DD'sin45°-DD'θcos45°
ここで、二次の微小項(DD'θ)を無視して
DE=DD'sin45°
同様に
D’E=DD'sin45°
として△DD'Eは直角二等辺三角形と考えるのだと思います。
    • good
    • 1
この回答へのお礼

ありがとうございます!
とてもわかり易かったです!
やっぱり厳密にはならないんですね。

お礼日時:2017/11/01 13:24

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aと関連する良く見られている質問

Q縦弾性率からせん断弾性率及び体積弾性率の導出方法

縦弾性率E、ポアソン比νの場合、
せん断弾性率:G=E/2(1+ν)
体積弾性率 :K=E/3(1-2ν)
という式で表されますが、どのように導くのでしょうか?
よろしくお願いします。
以上

Aベストアンサー

剪断弾性係数(G)は,正方形の剪断変形の幾何学形状によって導きます。

単位長さの辺(辺長=1,対角線長=√(2))を持ち,辺ABを底辺とする正方形(左回りに)ABCDに左から頂点Dに力を加えたら,平行四辺形ABC'D'に変形します。この時,辺ABと辺C'D'は平行のままです。また,この時,角DAD'を(γ)とします。とすれば,頂点Dの移動距離は,δ=tan(DD'/辺長)ですが,辺長は単位長さ,変形角度が十分小さいとすれば,δ=γとなり,δ=DD'=CC'=γです。

ここで,四角形の対角線長は,AC=BDですが,変形後はAC+Δ,BD-Δとなります。また,対角線AC'のひずみ度は,ε=1/E・(σ+νσ)ですので,対角線の伸びは,ひずみ度と対角線長を乗じたものになります。即ち,ΔL=ε・√(2)です。

ここで,対角線ACからAC'に垂線を引き交点をEとすると,AC'=AC+ΔLとなりますが,三角形CEC'は,頂点Eを90度とする2等辺三角形になっていますので,CC'は,CC'=ΔL・√(2)となります。

ここまでを整理しますと,
γ=CC'=ΔL・√(2)=ε・√(2)・√(2)=1/E・(σ+νσ)・√(2)・√(2)
γ=2/E・(1+ν)σ
σ=2(1+ν)/E・γ=γ/G つまり G=E/2(1+ν)となります。

体積弾性率(k)は,1辺を単位長さとする直方体の6面全てに圧力(P)が作用したときの体積ひずみを(εv)としたときの変形後の各辺の長さを(1+εi),i=x,y,zとすれば,体積ひずみは,-(変形後の体積)+(変形前の体積)ですから,
εv=-(1+εx)(1+εy)(1+εz)+1
となります。ここで,この式を解いて,この変形が微小変形であると仮定し2次以上の項を省略すれば,εv=-(εx+εy+εz)となります。
各方向のひずみが等しい(εx=εy=εz)とすれば,
e=-1/E・(-p+ν(p+p))ですから,
ev=-3・1/E・(-p+ν(p+p))
ev=p・3(1-2ν)/E=p/K つまり K=E/3(1-2ν)
となります。

剪断弾性係数(G)は,正方形の剪断変形の幾何学形状によって導きます。

単位長さの辺(辺長=1,対角線長=√(2))を持ち,辺ABを底辺とする正方形(左回りに)ABCDに左から頂点Dに力を加えたら,平行四辺形ABC'D'に変形します。この時,辺ABと辺C'D'は平行のままです。また,この時,角DAD'を(γ)とします。とすれば,頂点Dの移動距離は,δ=tan(DD'/辺長)ですが,辺長は単位長さ,変形角度が十分小さいとすれば,δ=γとなり,δ=DD'=CC'=γです。

ここで,四角形の対角線長は,AC=BDですが,変形後はAC+Δ,BD-...続きを読む

QNをkgに換算するには?

ある試験片に40kgの重りをつけた時の荷重は何Nをかけてあげると、重り40kgをつけたときの荷重と同等になるのでしょうか?一応断面積は40mm^2です。
1N=9.8kgfなので、「40kg=N×0.98」でいいのでしょうか?
ただ、式の意味がイマイチ理解できないので解説付きでご回答頂けると幸いです。
どなたか、わかる方よろしくお願いします。

Aベストアンサー

こんにちは。

kgfはSI単位ではないですが、質量の数値をそのまま重さとして考えることができるのがメリットですね。


>>>
ある試験片に40kgの重りをつけた時の荷重は何Nをかけてあげると、重り40kgをつけたときの荷重と同等になるのでしょうか?

なんか、日本語が変ですね。
「ある試験片に40kgの重りをつけた時の引っ張りの力は何Nの力で引っ張るのと同じですか?」
ということですか?

・・・であるとして、回答します。

40kgのおもりなので、「おもりにかかる重力」は40kgfです。

重力は万有引力の一種ですから、おもりにも試験片にも、地球からの重力はかかります。
しかし、試験片の片方が固定されているため、見かけ、無重力で、試験片だけに40kgfの力だけがかかっているのと同じ状況になります。

試験片にかかる引っ張り力は、

40kgf = 40kg×重力加速度
 = 40kg×9.8m/s^2
 = だいたい400N

あるいは、
102グラム(0.102kg)の物体にかかる重力が1Nなので、
40kg ÷ 0.102kg/N = だいたい400N


>>>1N=9.8kgfなので、「40kg=N×0.98」でいいのでしょうか?

いえ。
1kgf = 9.8N
ですね。


>>>一応断面積は40mm^2です。

力だけでなく、引っ張り応力を求めたいのでしょうか。
そうであれば、400Nを断面積で割るだけです。
400N/40mm^2 = 10N/mm^2 = 10^7 N/m^2
1N/m^2 の応力、圧力を1Pa(パスカル)と言いますから、
10^7 Pa (1千万パスカル) ですね。

こんにちは。

kgfはSI単位ではないですが、質量の数値をそのまま重さとして考えることができるのがメリットですね。


>>>
ある試験片に40kgの重りをつけた時の荷重は何Nをかけてあげると、重り40kgをつけたときの荷重と同等になるのでしょうか?

なんか、日本語が変ですね。
「ある試験片に40kgの重りをつけた時の引っ張りの力は何Nの力で引っ張るのと同じですか?」
ということですか?

・・・であるとして、回答します。

40kgのおもりなので、「おもりにかかる重力」は40kg...続きを読む

Qヤング率の単位について

MKS単位系では、N/m^2(ニュートン毎平方メートル)ですがこれをCGS単位系dyne/cm^2に変換したいんですが、1N/m^2=何dyne/cm^2になりますか?お教え願います。
できれば、簡単でいいので、途中式も示していただきたいです。

Aベストアンサー

1[N]=10^5[dyne]
1[m]=10^2[cm]⇒ 1[m^2]=10^4[cm^2]

です。よって、

1[N/m^2]=10^5/10^4[dyne/cm^2]
=10[dyne/cm^2]

となります。
 ヤング率の単位は[GPa]で表記されていることが多いので、[N/m^2]=[Pa]より

1[GPa]=10^10[dyne/cm^2]

と覚えておくと便利です。

Qポアソン比と張力の関係!?

長さl、ヤング率Eの一様な棒の一端を固定し、
他端にTの張力を加えたとき、棒の体積ΔVだけ
変化した。ポアッソン比を求めよ。

という問題で苦戦しています。
ポアッソン比とはσ=Δd/d/Δl/l
と書いてあるのですがまったく分かりません。
いろいろ調べてみたのですが、E=2G(1+μ)この
公式はよく分からないし、
p(張力)=E(ヤング率)a(伸び率)
と書いてあったのですが、その伸び率も分かりません。
火曜日提出の課題なのですが分からないので教えてください。
お願いします。

Aベストアンサー

普通の材料力学のテキストに載っているような問題ですが、テキストを読むよりここでの回答の方がよく理解できた(?)ということもままありますから(←以下の回答がそれに該当するかどうかはまったく別)、蛇足ながら知識の整理をと回答のヒントを書いておきます。
●ポアソン比・・・縦と横の歪みの比
長さL0、直径d0の丸棒(あるいは横幅d0の角棒)を引っ張っると棒は引っ張り方向に△lだけ伸びて長さがLになり、幅は△dだけ縮んでdになったとします。このとき単位あたりの伸びあるいは縮みを”ひずみ”と呼んでεで表すと2つのひずみが定義できますね。すなわち
(1) ε=(L-L0)/L0=△L/L0 ・・・縦ひずみ
(2) ε’=(d-d0)/d0=△d/d0・・・横ひずみ
この縦ひずみと横ひずみの比は材料によって一定の値をとることが知られていますが、その比を
(3) ν=-ε’/ε 
と表して、このν(質問ではσと表記)をポアソン比と
呼んでいます。
●E:ヤング率・・・応力と歪の間の比例係数
一端が壁に固定されている棒を考える(←両端から引っ張ってもよい)。引っ張り方向に垂直な断面ABの面積をAとし、引っ張る力をPとした場合、単位断面積あたりに作用する力を応力(引っ張る場合:引っ張り応力、圧縮する場合:圧縮応力という)と呼び次式で定義されます。
(4) σ=P/A ・・・応力
応力(4)とひずみ(1)の間に比例関係がある場合、比例乗数をEとすると
(5) σ=Eε
と表され、この関係をフックの法則と呼んでいますが、この比例定数Eをヤング率(縦弾性係数)と呼んでいます。
●横弾性係数・・・せん断応力とせん断歪みの間の比例係数
右図のように一端に   A|    ↓P
加重Pが作用する場    |--- 
合、AB面には上の   ↑|    |
方向に応力が発生し   B|---
その合計は加重Pに    |
等しくなります。こ
のような作用面に沿って生じる応力を「せん断応力」と呼び、これは次式で定義されます。
(6) τ=P/A (A:ABの面積)
次に、6面体ABCDの周辺にせん断応力が作用すると、変形します。その変形分をせん断歪と呼び、普通γの記号で表されます(図はここではうまく書けませんので適当なテキストを見てください)。せん断応力τとせん断歪γの間にも比例関係が成立して
(7) τ=Gγ
なる関係があります。このGを横弾性係数(あるいは剛性率)と呼んでいます。
●E=2G(1+ν)
以上の話から、この式はヤング率と横弾性係数、ポアソン比の間に成り立つ関係を表していることが分かります。この式は理論的に導かれますが、ここでは大変なので適当な材料力学のテキストを参照してください。
>p(張力)=E(ヤング率)a(伸び率)
と書いてあったのですが
(4)と(5)より
(8) P/A=Eε⇒P=EεA⇒P=Eε(A:単位面積とする)

>長さL、ヤング率Eの一様な棒の一端を固定し、
他端にTの張力を加えたとき、棒の体積ΔVだけ
変化した。ポアッソン比を求めよ。

・棒の断面は単位面積(d=1)と仮定します。
・△V=V-V’
  V=L×A=L
  V'=(L+△L)×(d-△d)^2
   =(L+△L)×(1-2△d)・・△d^2は微小量でカットした
   =L-2L△d+△L ・・2△L△dは微少量でカット
 △V=2L(△d-△L/L)=2L(ε’-ε)
   =2εL(-ν-1) ・・(1)(2)を使う
   =-2PL(ν+1)/E ・・(8)を使う
これから
 ν=-(E△V/2PL+1)
となったが間違っているかもしれません(←その可能性大)。ご自分で計算してみてください。

普通の材料力学のテキストに載っているような問題ですが、テキストを読むよりここでの回答の方がよく理解できた(?)ということもままありますから(←以下の回答がそれに該当するかどうかはまったく別)、蛇足ながら知識の整理をと回答のヒントを書いておきます。
●ポアソン比・・・縦と横の歪みの比
長さL0、直径d0の丸棒(あるいは横幅d0の角棒)を引っ張っると棒は引っ張り方向に△lだけ伸びて長さがLになり、幅は△dだけ縮んでdになったとします。このとき単位あたりの伸びあるいは縮みを”ひずみ”と呼ん...続きを読む

Qせん断弾性率:G=E/2(1+ν)、体積弾性率:K=E/3(1-2ν)の誘導の仕方

せん断弾性率(G)、体積弾性率(K)、縦弾性率(E)、ポアソン(ν)として、

G=E/2(1+ν)、K=E/3(1-2ν)

を誘導するにはどうすればいいんですか??
教えてください。
後、どこかにいいサイトがあったら教えてください。
よろしくお願いします。

また、それと、誘導しろっていうのは、どういう意味なんですか??
それになるように導けという意味なんですか??

Aベストアンサー

http://oshiete1.goo.ne.jp/qa1470436.html

でどうでしょう?

Qねじり剛性係数と断面二次モーメントの関係

ねじり剛性係数と断面二次モーメントの関係
縦横XYの断面二次モーメント値からねじり剛性係数、またはそれに相等するねじり変形しにくさを表す数値を出す方法を探しています。

いつくかある断面形状のねじり強さの比率を知りたいのです。材質は考慮しません。
単純にXYの断面二次モーメント値をかけ算して、その値の比率で判断していいものでしょうか?

具体的には乗り物のフレームを設計して、すでに一度専用のパイプを試作しました。
予想以上に強かったので断面を小さくして軽量化を図りたいのですが、一体どれくらい落としてよいものか判断がつかないのです。
結局は当てずっぽうなのですが、最初のものに比較して何%ダウンという指標があれば有力な判断材料となります。
宜しくお願いいたします。

Aベストアンサー

まず、ねじりの剛性係数をGJとします。
GJの定義があいまいなので、明確にしておきましょう。

長さLの一様断面の棒を、トルクTで捩じった場合の回転角をθとします。
すると、
θ=TL/(GJ) ・・・(1)
と書けます。
ここで、
G:横弾性係数
J:捩り断面2次モーメント
です。
このとき、GJが、捩りの剛性係数になります。

このときのJは、断面形状が円または中空円の場合には、
J=Ip(断面2次極モーメント)=Ix+Iy ・・・(2)
で定義されます。

また、断面形状が上記以外の場合でも、棒の断面の両端面が変形後も平面となるように拘束されている場合(全周溶接などによって)には、Jはやはり式(2)で定義できます。
今の質問の構造の場合、フレームと書いていらっしゃるので、棒の両端面はしっかりと拘束されていると思われ、式(2)が適用できます。

これがあなたの質問に対する直接の回答となります。

以上のほか、棒の断面の両端面が変形後も平面となるように拘束されていない場合のケースについて補足説明しておきます。
棒を両手で握って捩ると、断面が円でない場合には、両端面が変形後は軸方向に波打った形状となって、平面とはなりません。(この現象が顕著に現れる例としては、紙を丸めて筒状にして捩った場合があげられます。)
このような捩りの状態を「サン・ブナンの捩り」と呼びます。
断面が長方形の棒を、両端を溶接せず、補助金具などを用いて、他の部材にねじ止めしているような場合には、このサン・ブナンの捩りが発生しやすくなります。
この場合の注意としては、
J<<Ip ・・・(3)
となってしまうことです。
この場合の取り扱い方については、一般の材料力学の本はごまかしているのが普通です。
あなたの場合、「予想以上に強かった」と書かれているので、サン・ブナンの捩りの状態ではなく、両端面がガッシリと他部材に溶接されているケースと推測しています。

まず、ねじりの剛性係数をGJとします。
GJの定義があいまいなので、明確にしておきましょう。

長さLの一様断面の棒を、トルクTで捩じった場合の回転角をθとします。
すると、
θ=TL/(GJ) ・・・(1)
と書けます。
ここで、
G:横弾性係数
J:捩り断面2次モーメント
です。
このとき、GJが、捩りの剛性係数になります。

このときのJは、断面形状が円または中空円の場合には、
J=Ip(断面2次極モーメント)=Ix+Iy ・・・(2)
で定義されます。

また、断面形状が上記以外の場合でも、棒の断...続きを読む

QkN単位とkgf単位の変換の仕方について教えてください。

kN(キロニュートン)単位とkgf(キログラムエフ)単位の変換の仕方について教えてください。
kgf側の数字がわかっている時、○○kgf×9.8=○○N
とういのは聞いたのですが、キロニュートンで答えを知りたい場合はどうしたらよいのでしょうか?
また、逆にニュートン側の数字だけわかっている場合にキログラムエフにするには、キロニュートン側の数字だけわかっている場合にキログラムエフにするには、の場合も教えてください。

ネットで調べても、数字がぐちゃぐちゃになってどういった考え方をして計算してよいのかわかりません。
強度計算をしているので、間違いないように理解できるように教えていただければ本当に助かります。
どうぞ助けてください。
よろしくお願い致します。

Aベストアンサー

 k(キロ)は1000という意味ですから、

 1kN=1000N

となります。

http://www.weblio.jp/content/%E3%82%AD%E3%83%AD

 1km=1000m、1kg=1000g

と同じです。

Q樹脂材料の曲げ弾性率について

先日、仕事の関係でプラスチックのスナップフィット
(プラスチック部品の一方と他方がパチンとはまる
爪形状です。プラモデルにもよくあると思います。)
の荷重計算をしようとしました。
その爪形状には大きなテーパがついており、
根元が太く先細だったので、
単純な梁の公式では計算できずに
excelマクロによる数値積分で
梁の曲げ微分方程式(d^2y/dx^2=-M/EI)を
解こうとしました。
-------------------------------------
一応できたので、早速荷重を計算して実測値と
照らし合わせてみようとしたのですが、
材料のヤング率(縦弾性係数)を知らないことに
気づきました。
同僚に聞いてみたところ、「曲げ弾性率」というのは
材料の仕様書に載っていると教えてくれました。
職場にある材料便覧を見ても「曲げ弾性率」は
載っていました。
この「曲げ弾性率」はヤング率(縦弾性係数)と
同じなのでしょうか。それとも違うのでしょうか。
もし違う場合、ヤング率(縦弾性係数)は
どのようにして調べるべきなのでしょうか。
似たような経験がある方がいましたら
お手数ですがご教示願います。

先日、仕事の関係でプラスチックのスナップフィット
(プラスチック部品の一方と他方がパチンとはまる
爪形状です。プラモデルにもよくあると思います。)
の荷重計算をしようとしました。
その爪形状には大きなテーパがついており、
根元が太く先細だったので、
単純な梁の公式では計算できずに
excelマクロによる数値積分で
梁の曲げ微分方程式(d^2y/dx^2=-M/EI)を
解こうとしました。
-------------------------------------
一応できたので、早速荷重を計算して実測値と
照らし合わせてみようとし...続きを読む

Aベストアンサー

結果から言うと,Eに曲げ弾性率を代入しても問題ないと思います.

引張弾性率と曲げ弾性率は測定方法が異なりますので,物性のもつ意味は違います.引張りの場合(丸棒を引っ張るようなケースです),材料内部はすべて引張応力になりますよね.

しかし,曲げの場合(板を曲げるようなケース)では,ふくらんでる面には引張応力,へこんでる面には圧縮応力がかかります.このため,例えば引張弾性率と圧縮弾性率が異なるような材料では,引張弾性率と曲げ弾性率は違ってきます.

また,少し専門的になりますが,曲げのかかる部材には,引張・圧縮応力の他に,せん断応力もかかっています.これらの効果が総合的に寄与してくるため,引張弾性率と曲げ弾性率は,「意味合いとしては」異なる物性値です.

しかし,ごく一般的なプラスチックであれば,引張弾性率と曲げ弾性率はほぼ同じ値になります.
下記などにデータが出ていますが,恐らくほぼ同等か,曲げ弾性率の方が10%程度低い値になっていると思います.
http://www.m-ep.co.jp/mep-j/tech/index.htm
http://www.mrc.co.jp/acrypet/04tech_01.html

カタログデータに曲げ試験が多い理由は,試験が簡単だからです.薄い平板の試験片が使えますからね(チューイングガムのような形状です).それに対し,引張試験では,試験片を「つかむ部分」の加工が難しく,やや複雑な形状になってしまいます.

というわけで,プラスチックの分野では,曲げ弾性率を測定して,これをEとして代用するケースが多いと思います.

ただし,圧縮やせん断弾性率が引張と極端に違う材料・・・たとえば,ガラス繊維で一方向強化したような異方性材料では,曲げ弾性率とヤング率は大きく異なります.

あと,蛇足になりますが・・・
曲げ弾性率=曲げ応力/曲げひずみ
とありますけど,前述の通り,曲げ応力や曲げひずみは一定値ではありませんので注意が必要ですね.材料内部で分布をもっています(ここが引張と違うところ).

通常は,曲げスパンL,破断荷重P,試験片幅b,厚さh,たわみxなどを用いて,
E=(P・L^3)/(4・b・h^3・x)
のような式で求めます.試験方法によっても式が違ってきますので,材料力学の教科書をお読み下さい.

結果から言うと,Eに曲げ弾性率を代入しても問題ないと思います.

引張弾性率と曲げ弾性率は測定方法が異なりますので,物性のもつ意味は違います.引張りの場合(丸棒を引っ張るようなケースです),材料内部はすべて引張応力になりますよね.

しかし,曲げの場合(板を曲げるようなケース)では,ふくらんでる面には引張応力,へこんでる面には圧縮応力がかかります.このため,例えば引張弾性率と圧縮弾性率が異なるような材料では,引張弾性率と曲げ弾性率は違ってきます.

また,少し専門的になりま...続きを読む

Qボルトの許容せん断応力について

ボルトの許容せん断応力の求めかたを教えてください。
材料はSS400
ボルトはM20 
です。
計算式だけでもかまいませんのでよろしくおねがいします。

Aベストアンサー

許容応力は「建築基準法」、「鋼構造設計規準(以下、S規)」など各種法令基準で決められていて、それぞれ数値が異なりますし、ボルトの場合、一面せん断か二面せん断か、せん断力と同時に引張力も受けるのか、などでも違ってくるんですが、

ボルトの許容せん断力を求める一番簡単な方法は、S規に基づく次の計算方法だと思います。

SS400の許容せん断応力度f=0.7 ton/cm^2・・・S規で決まってます。

このfの値にボルトの軸の断面積(M20であればA=3.14cm^2)を掛ければ、許容せん断力(A×f=2.198ton)が求まります。

なお、この値は長期荷重に対する許容値で、風荷重等の短期荷重に対しては1.5倍
することができます。

こんなんでどうでしょうか?

ちなみに、

http://www.kawasaki-steel.co.jp/binran/index.html

にその他いろいろデータが載ってます。

参考URL:http://www.kawasaki-steel.co.jp/binran/index.html

許容応力は「建築基準法」、「鋼構造設計規準(以下、S規)」など各種法令基準で決められていて、それぞれ数値が異なりますし、ボルトの場合、一面せん断か二面せん断か、せん断力と同時に引張力も受けるのか、などでも違ってくるんですが、

ボルトの許容せん断力を求める一番簡単な方法は、S規に基づく次の計算方法だと思います。

SS400の許容せん断応力度f=0.7 ton/cm^2・・・S規で決まってます。

このfの値にボルトの軸の断面積(M20であればA=3.14cm^2)を掛け...続きを読む

Qモードとはなんですか?

 解析ソフトを使って固体の固有値解析(固有振動数解析)を行うとモードという言葉が出てきます。モードとはなんですか?モード形状によって固有振動数が変化するのはどうしてでしょうか?
「モード形状1で200Hzの固有振動数が検出された」という結果であったら、どのような条件下で200Hzの振動が得られたということなのでしょうか?
 モード形状1ならば固有振動数は手計算の結果(片面支持で材料の長さ、密度、ポアソン比、ヤング率を公式に代入)と近似するのですがモード形状が上がるに従って固有振動数が上がっていきます。

Aベストアンサー

物理、特に振動解析の世界で「モード」と言ったら、通常は振動の態様のことを指します。

両端を固定した弦の振動で考えてみます。

[両端を固定した弦」

○──────○

ご承知かと思いますが、もっとも低い次数の振動(基本波)は以下のような振動形態を示します。

[基本波]
   __
  /  \ 
○/    \○

より高い次数の振動の振動の態様は以下のようになります。

[第二次高調波](2倍振動)
  _ 
○/ \   ○
    \ /
      ̄

[第三次高調波](3倍振動)
  
○/\  /\○
   \/

このような振動態様のことを「モード」といい、「振動モードが異なる」などと言います。

さらに剛体棒であれば弦と異なり、横振動、ねじり振動、縦振動などの異なる種類の振動が現れます。それぞれどんな変形をするかは参考ページ[1]を見てください。これらの変形の違いのことも「モード」と呼び、例えば「横振動モードの1次の固有振動数は○○Hz」などと言います。

isaccさんがどのようなソフトを使っておいでなのかどのような計算をなさっているか分からないので「モード1」がどんなものであるかは断言できないのですが、「横振動、ねじり振動、縦振動」などの違いを指している可能性も考えられます。横振動、ねじり振動、縦振動ではそれぞれ解くべき方程式が異なる(本質的には2次の微分方程式に帰着するのですが、代入する物理量が異なる)ので、固有振動数も当然ながら異なったものになります。
また「モード形状が上がるにつれて」が、振動の次数が上がる意味であれば当然ながら固有振動数も上がります。

[1] http://exile.itc.pref.tokushima.jp/report/femop/mode-post2/default.htm

参考URL:http://exile.itc.pref.tokushima.jp/report/femop/mode-post2/default.htm

物理、特に振動解析の世界で「モード」と言ったら、通常は振動の態様のことを指します。

両端を固定した弦の振動で考えてみます。

[両端を固定した弦」

○──────○

ご承知かと思いますが、もっとも低い次数の振動(基本波)は以下のような振動形態を示します。

[基本波]
   __
  /  \ 
○/    \○

より高い次数の振動の振動の態様は以下のようになります。

[第二次高調波](2倍振動)
  _ 
○/ \   ○
    \ /
      ̄

[第三次高調波](3倍振動)
 ...続きを読む


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング