出産前後の痔にはご注意!

はじめまして。よろしくお願いします。
現在、70個ほどのデータの標準偏差と平均をグラフにしてまとめている作業をしています。(エクセルで、まず平均の棒グラフをつくり、その後、y誤差範囲に標準偏差を代入してグラフ化しています。)母集団もすくなく、データも明らかにばらつきがある、たとえて言うと、1のものもあれば、1000のものあるのに、データは70前後。
もちろん、標準偏差もものすごく大きくなります。
エクセルで作成しているのですが、STDEVPという母集団全部を考慮に入れる(標本としないで)式でやっています。

本題ですが、そのばらつきのある標準偏差をどうにかして縮めたいのです。「誤差を範囲に入れるような感じでやればもっと標準偏差のバーが小さくなるだろう。それを考えろ。」と上司は言ってきますが、私にはさっぱりわかりません・・・。
母集団がすくなく、明らかにばらつきが見て取れる場合の標準偏差の式が何か別にあるのでしょうか・・・。

このQ&Aに関連する最新のQ&A

A 回答 (7件)

もう一つ状況がわからないのですが、



母集団と言うことは、すべての Data が取れている、ということであって、抜き取りではない、で間違いないですね。そうなると 「70 個ほど」 ではなくて、「確定した個数」 になります。
「母集団も少なく」 と言うのは、個数が 70 前後の母集団がいくつかある、と考えていいですか。

さて問題は、標準偏差と平均値を出す意味ですが、これはあくまで正規分布をしていることが前提です。そのままの数値では正規分布していないときは、対数変換した値の正規性の検討を行ない、正規性が確認できたら対数値を用いて、標準偏差、平均値の評価ができます。従って、見かけを良くするために対数を用いるのは間違いです。

また、測定上に問題があり、一部の数値を棄却することは可能ですが、適切な棄却検定を行なうことも必要になります。

> 母集団がすくなく、明らかにばらつきが見て取れる場合の標準偏差の式が何か別にあるのでしょうか。
は、きつい言い方をすれば、質問としては成立しません。
    • good
    • 3

もう一つ状況がわからないのですが、



母集団と言うことは、すべての Data が取れている、ということであって、抜き取りではない、で間違いないですね。そうなると 「70 個ほど」 ではなくて、「確定した個数」 になります。
「母集団も少なく」 と言うのは、個数が 70 前後の母集団がいくつかある、と考えていいですか。

さて問題は、標準偏差と平均値を出す意味ですが、これはあくまで正規分布をしていることが前提です。そのままの数値では正規分布していないときは、対数変換した値の正規性の検討を行ない、正規性が確認できたら対数値を用いて、標準偏差、平均値の評価ができます。従って、見かけを浴するために対数を用いるのは間違いです。

また、測定上に問題があり、一部の数値を棄却することは可能ですが、適切な棄却検定を行なうことも必要になります。

> 母集団がすくなく、明らかにばらつきが見て取れる場合の標準偏差の式が何か別にあるのでしょうか。
は、きつい言い方をすれば、質問としては成立しません。
    • good
    • 1

下手なことをすると、データのねつ造ということになり、発覚したとき大変なことになりますよ。

上司の指示であることを証拠として保存しておくことをおすすめします。
    • good
    • 0

>「標準偏差のバーが小さくなるだろう」



Excelの使い方の話?


標準偏差の値は全体の約68%が入る平均を中心とした幅なので母集団がばらつく以上小さくはならない。

標準偏差そのものを小さくするのならば、今までの回答者の方々のとおり。

あとは、データで下限上限付近の物を取り除く。
(その代わり、取り除く理由がほしい。:「このデータは明らかに観測者の測定ミス」、「測定機器に異常があった。」など)

ヒストグラムを書いてみて外側のデータを無視するなどしてみる。
    • good
    • 0

まず、上司の方に聞いてみて下さい。


何のためにデータを取っているのか?
答え
1.履歴の収集
2.工程の維持管理
3.バラツキの減少
等々
もし3ならば 母集団そのものにアクションをとるべきです。たとえば 全数検査を行い規格値をこえるものはどの程度あるのか?
で 規格より外れたものやそのロットは 不良扱いするのか?
で いくら外れたデータが出ても何もしないのであれば 意味がないのではありませんか?
    • good
    • 0

 データそのものがばらついている場合は分散は(標準偏差も)でかくなります。

データそのものが否定されない限りこれを直すのは無理でしょう。
 分散の検定方法として、カイ2乗分布によるものがあります。この分布関数は分散の信頼度を検定するために使われています。詳しいことは確立統計の本に譲りますが、何パーセントの確率で分散がこの範囲に入るということを示すことができます。

 こんなものではだめでしょうか?
    • good
    • 0

log変換すればいいのではないですか?

    • good
    • 0

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q統計学的に信頼できるサンプル数って?

統計の「と」の字も理解していない者ですが、
よく「統計学的に信頼できるサンプル数」っていいますよね。

あれって「この統計を調べたいときはこれぐらいのサンプル数があれば信頼できる」という決まりがあるものなのでしょうか?
また、その標本数はどのように算定され、どのような評価基準をもって客観的に信頼できると判断できるのでしょうか?
たとえば、99人の専門家が信頼できると言い、1人がまだこの数では信頼できないと言った場合は信頼できるサンプル数と言えるのでしょうか?

わかりやすく教えていただけると幸いです。

Aベストアンサー

> この統計を調べたいときはこれぐらいのサンプル数があれば信頼できる・・・
 調べたいどの集団でも、ある一定数以上なら信頼できるというような決まりはありません。
 何かサンプルを集め、それをなんかの傾向があるかどうかという仮説を検証するために統計学的検定を行って、仮設が否定されるかされないかを調べる中で、どの検定方法を使うかで、最低限必要なサンプル数というのはあります。また、集めたサンプルを何か基準とすべき別のサンプルと比べる検定して、基準のサンプルと統計上差を出すに必要なサンプル数は、比べる検定手法により計算できるものもあります。
 最低限必要なサンプル数ということでは、例えば、ある集団から、ある条件で抽出したサンプルと、条件付けをしないで抽出したサンプル(比べるための基準となるサンプル)を比較するときに、そのサンプルの分布が正規分布(正規分布解説:身長を5cmきざみでグループ分けし、低いグループから順に並べたときに、日本人男子の身長なら170cm前後のグループの人数が最も多く、それよりも高い人のグループと低い人のグループの人数は、170cmのグループから離れるほど人数が減ってくるような集団の分布様式)でない分布形態で、しかし分布の形は双方とも同じような場合「Wilcoxon符号順位検定」という検定手法で検定することができますが、この検定手法は、サンプルデータに同じ値を含まずに最低6つのサンプル数が必要になります。それ以下では、いくらデータに差があるように見えても検定で差を検出できません。
 また、統計上差を出すのに必要なサンプル数の例では、A国とB国のそれぞれの成人男子の身長サンプルがともに正規分布、または正規分布と仮定した場合に「t検定」という検定手法で検定することができますが、このときにはその分布を差がないのにあると間違える確率と、差があるのにないと間違える確率の許容値を自分で決めた上で、そのサンプルの分布の値のばらつき具合から、計算して求めることができます。ただし、その計算は、現実に集めたそれぞれのサンプル間で生じた平均値の差や分布のばらつき具合(分散値)、どのくらいの程度で判定を間違える可能性がどこまで許されるかなどの条件から、サンプル間で差があると認められるために必要なサンプル数ですから、まったく同じデータを集めた場合でない限り、計算上算出された(差を出すために)必要なサンプル数だけサンプルデータを集めれば、差があると判定されます(すなわち、サンプルを無制限に集めることができれば、だいたい差が出るという判定となる)。よって、集めるサンプルの種類により、計算上出された(差を出すために)必要なサンプル数が現実的に妥当なものか、そうでないのかを、最終的には人間が判断することになります。

 具体的に例示してみましょう。
 ある集団からランダムに集めたデータが15,12,18,12,22,13,21,12,17,15,19、もう一方のデータが22,21,25,24,24,18,18,26,21,27,25としましょう。一見すると後者のほうが値が大きく、前者と差があるように見えます。そこで、差を検定するために、t検定を行います。結果として計算上差があり、前者と後者は計算上差がないのにあると間違えて判断する可能性の許容値(有意確率)何%の確率で差があるといえます。常識的に考えても、これだけのサンプル数で差があると計算されたのだから、差があると判断しても差し支えないだろうと判断できます。
 ちなみにこの場合の差が出るための必要サンプル数は、有意確率5%、検出力0.8とした場合に5.7299、つまりそれぞれの集団で6つ以上サンプルを集めれば、差を出せるのです。一方、サンプルが、15,12,18,12,21,20,21,25,24,19の集団と、22,21125,24,24,15,12,18,12,22の集団ではどうでしょう。有意確率5%で差があるとはいえない結果になります。この場合に、このサンプルの分布様式で拾い出して差を出すために必要なサンプル数は551.33となり、552個もサンプルを抽出しないと差が出ないことになります。この計算上の必要サンプル数がこのくらい調査しないといけないものならば、必要サンプル数以上のサンプルを集めて調べなければなりませんし、これだけの数を集める必要がない、もしくは集めることが困難な場合は差があるとはいえないという判断をすることになるかと思います。

 一方、支持率調査や視聴率調査などの場合、比べるべき基準の対象がありません。その場合は、サンプル数が少ないレベルで予備調査を行い、さらにもう少しサンプル数を増やして予備調査を行いを何回か繰り返し、それぞれの調査でサンプルの分布形やその他検討するべき指数を計算し、これ以上集計をとってもデータのばらつきや変化が許容範囲(小数点何桁レベルの誤差)に納まるようなサンプル数を算出していると考えます。テレビ視聴率調査は関東では300件のサンプル数程度と聞いていますが、調査会社ではサンプルのとり方がなるべく関東在住の家庭構成と年齢層、性別などの割合が同じになるように、また、サンプルをとる地域の人口分布が同じ割合になるようにサンプル抽出条件を整えた上で、ランダムに抽出しているため、数千万人いる関東の本当の視聴率を割合反映して出しているそうです。これはすでに必要サンプル数の割り出し方がノウハウとして知られていますが、未知の調査項目では必要サンプル数を導き出すためには試行錯誤で適切と判断できる数をひたすら調査するしかないかと思います。

> どのような評価基準をもって客観的に信頼できると判断・・・
 例えば、工場で作られるネジの直径などは、まったくばらつきなくぴったり想定した直径のネジを作ることはきわめて困難です。多少の大きさのばらつきが生じてしまいます。1mm違っても規格外品となります。工場では企画外品をなるべく出さないように、統計を取って、ネジの直径のばらつき具合を調べ、製造工程をチェックして、不良品の出る確率を下げようとします。しかし、製品をすべて調べるわけにはいきません。そこで、調べるのに最低限必要なサンプル数を調査と計算を重ねてチェックしていきます。
 一方、農場で生産されたネギの直径は、1mmくらいの差ならほぼ同じロットとして扱われます。また、農産物は年や品種の違いにより生育に差が出やすく、そもそも規格はネジに比べて相当ばらつき具合の許容範囲が広くなっています。ネジに対してネギのような検査を行っていたのでは信頼性が損なわれます。
 そもそも、統計学的検定は客観的判断基準の一指針ではあっても絶対的な評価になりません。あくまでも最終的に判断するのは人間であって、それも、サンプルの質や検証する精度によって、必要サンプルは変わるのです。

 あと、お礼の欄にあった専門家:統計学者とありましたが、統計学者が指摘できるのはあくまでもそのサンプルに対して適切な検定を使って正しい計算を行ったかだけで、たとえ適切な検定手法で導き出された結果であっても、それが妥当か否か判断することは難しいと思います。そのサンプルが、何を示し、何を解き明かし、何に利用されるかで信頼度は変化するからです。
 ただ、経験則上指標的なものはあります。正規分布を示すサンプルなら、20~30のサンプル数があれば検定上差し支えない(それ以下でも問題ない場合もある)とか、正規分布でないサンプルは最低6~8のサンプル数が必要とか、厳密さを要求される調査であれば50くらいのサンプル数が必要であろうとかです。でも、あくまでも指標です。

> この統計を調べたいときはこれぐらいのサンプル数があれば信頼できる・・・
 調べたいどの集団でも、ある一定数以上なら信頼できるというような決まりはありません。
 何かサンプルを集め、それをなんかの傾向があるかどうかという仮説を検証するために統計学的検定を行って、仮設が否定されるかされないかを調べる中で、どの検定方法を使うかで、最低限必要なサンプル数というのはあります。また、集めたサンプルを何か基準とすべき別のサンプルと比べる検定して、基準のサンプルと統計上差を出すに必要な...続きを読む

Q標準偏差を求める際のデータ数について

統計初心者ですが、この度アンケート調査を行い、その結果報告書を作成しなければならないのですが、データ数9の場合、平均、最小、最大に加え、標準偏差も記載しようと思っていますが問題はないでしょうか?

標準偏差は、データが30、50以上ないと意味がないということを聞いたことがあるので戸惑っています。

また問題ない場合、「データ数が少ない場合は補正係数を掛ける」という説明を見かけたのですが、これは単に算出した標準偏差に補正係数を掛けて、記載すればいいのでしょうか? この場合の記載の仕方などについても教えていただけないでしょうか。

Aベストアンサー

標準偏差を求めることは,特に問題はありません。
ただ,データ数が少ないとばらつき具合が正しいかどうかの判断に困るというだけです。

補正係数については,条件によって変化する場合,例えばアンケートだと男女差や年代等による差異を軽減するためには使えますが,質問を見る限りは補正をする必要はないと思います。

標準偏差の意味を知る意味でも,正規分布について調べてみることをおすすめします。

Q少ない母数に対するアンケート調査の統計的意義

論文作成の中で非常に特殊な職業の方を対象としたアンケート調査を検討しております。
この職業の方は全国に60名程しか存在せず、そのうちアンケート調査できそうな人数は30名です(最悪20人)。

疑問点は
(1)このような非常に母数の少ないアンケート調査による場合、統計的に有意なデータが得られるのでしょうか?

(2)個々のデータの処理方法はどうしたら良いのでしょうか。例えば、年収400万前後が10人、600万円台が5人、一千万円台が15人というデータが出た場合に、一般の職業の年収と比較して高額であると主張するには、どのような手法でデータ処理をすれば良いのでしょうか。

私は統計学を体系的に学んだことはありませんが、どうか御指導よろしくお願いします。

Aベストアンサー

その職業を明確に定義できる条件があるなら、
母数30は十分な数字だと思います。
(所得については、副業をもっているかどうかなどの
確認が必要です。まばらだったら、30は少ないですね。
全員が、その職業からだけの所得なら、問題なく統計処理
していいと思います。)

まずは例外的事情がありそうなものを除いたサンプルから、
平均と分散、最大値、最小値、中央値を求めてください。
そして一般の職業のものと比較してください。

明確な差が出ればそれでいいと思いますし、差が出なければ
1.差が出るような計算方法を考える
2.どうしてその方法だと差が出るのか考える
という作業をすることになります。

とにかくはじめはグラフを書いて、イメージを膨らませてみることですね。

Q標本数が少ないときの検定の仕方

まず、私が今、行おうとしている検定の仕方をご説明します。
1. 非常に時間のかかる測定結果が数件あり、そのうちの1件(標本A)が平均から大きく外れた値を示しています。おそらく測定時になにかの外乱があり、このような値を示したのでしょう。原因を追求するのは、困難なのでこの値をすててしまいたいところです。
2. そこで平均、分散、標準偏差を計算しました。***
3. 標本が正規分布をなすことを仮定して、標本Aよりも大きな平均よりのずれを示す確率を正規分布確率表で確認したところ、16%と出ました。
4. と、いうことはそのような値が生じる確率は16%ある訳で、この値を捨てるのは適切ではない。うーん。残念。←今、ここ。

さて、お聞きしたいのは***の部分です。
今回の場合、この異常値・標本Aを平均、分散、標準偏差の計算に用いることで、大きくこれらの値が変わってしまっています。
たとえば、標本Aを取り除いた上で、平均、分散、標準偏差の計算を行ってみると、標本Aの値が生じ得る確率は0.04%になります。ということはなにか変なことが起こったんだろうね、ということでこの値は捨てていいことになると思います。

しかし、異常値かもしれない値を、最初から取り除いて(つまり特別扱いして)行う検定というのもなんだか、ズルをしているようで変な気がします。

このような計算の仕方(検定の対象となる異常値をあらかじめ除いて検定を行うやりかた)は統計上、正しい手順なのでしょうか?
そもそも標本数が少ないときにはもっと別の手順で検定を行うべきなのでしょうか?

なにぶん、素人なので定義に反した用語の使い方をしているかも知れませんが、何卒よろしくお願いいたします。

まず、私が今、行おうとしている検定の仕方をご説明します。
1. 非常に時間のかかる測定結果が数件あり、そのうちの1件(標本A)が平均から大きく外れた値を示しています。おそらく測定時になにかの外乱があり、このような値を示したのでしょう。原因を追求するのは、困難なのでこの値をすててしまいたいところです。
2. そこで平均、分散、標準偏差を計算しました。***
3. 標本が正規分布をなすことを仮定して、標本Aよりも大きな平均よりのずれを示す確率を正規分布確率表で確認したところ、16%と出ました。
4...続きを読む

Aベストアンサー

かけ離れた値を捨てる処方としては棄却検定があります。
http://www10.plala.or.jp/biostatistics/rejectiontest.htm
http://www1.doshisha.ac.jp/~kibuki/computer/resume/chap13.pdf
などをご参照下さい。

Q正規分布に従わないと標準偏差の算出は向かないでしょうか?

正規分布に従うとは、平均値の分布が多いという意味でしょうか?

日々変わるデータの点数が凸のような分布でなく、平均値付近が少ない
凹のようなデータの集合だと、標準偏差を算出し正規分布を使い
30%以下の人や70%以上の人を毎日抽出するような用途には
向かないのでしょうか?

Aベストアンサー

まず、正規分布に従うとは、「分布が正規分布のグラフと同じ形をする事」をいいます。
そのため、平均辺りが多くても△のような分布グラフだったり、
左右が対象でないと、「正規分布に従う」とは言いません。

そのため、試験の成績などは、「正規分布に近い」だけであって、
「正規分布に従っている」のではありません。

つまり、「偏差値」を使うべきかどうかは、偏差値の「分かりやすさ」と、
その分布が正規分布に近いかどうかの判断になります。



例えば、凹のようなデータでも、両端がなだらかになっていれば、そこそこ偏差値も使えます。

逆に、両端が崖のようになっていると、偏差値を使うのは控えた方がいいでしょう。
(たとえば、30点や、80点の人は多いけど、29点以下や、81点以上がいないなど)

また、分布が左右対称でない場合も、使用をやめた方がいいでしょう。
平均値と、中央値(順位が真ん中の人の値)が離れると、偏差値の感覚的な値とは
ずれてきます。



いずれにしても、ある程度のデータがあるのであれば、そのデータで
やってみるのが一番です。

出るべき結果と大きなずれがなければ、分かりやすいので使ってしまっても
いいのではないでしょうか。

試験の結果なんかでも、山が二つあったり、左右に偏っている事なんて
よくあります。

それでも、偏差値が、それなりに機能していますから、まずはやってみるのが
いいのではないかと思います。

まず、正規分布に従うとは、「分布が正規分布のグラフと同じ形をする事」をいいます。
そのため、平均辺りが多くても△のような分布グラフだったり、
左右が対象でないと、「正規分布に従う」とは言いません。

そのため、試験の成績などは、「正規分布に近い」だけであって、
「正規分布に従っている」のではありません。

つまり、「偏差値」を使うべきかどうかは、偏差値の「分かりやすさ」と、
その分布が正規分布に近いかどうかの判断になります。



例えば、凹のようなデータでも、両端がなだら...続きを読む

Q偏差値の母集団の大きさは

文系の私がとんでもないことに巻き込まれました
5~6人で構成される事業所が20ほどある会社です
これまでも賞与や給与の能力考課が行われていましたが
なおざりでほとんど機能していませんでした。
このたび考課結果の点数を、偏差値で計算しなおして
所得に大きな差をつけるんだそうです(他人事みたいですね)

この場合の母集団の大きさはどのくらいが適当なのでしょうか?
似たような仕事の事業所長が集団で考課をしますのである程度大きい母集団にはできますが
総務部などはたった3人でどうなるのやら。
母集団は30くらいが適当なのかなと思っていますが
この辺の資料が探せません
また偏差値を使うことは適切なのでしょうか

Aベストアンサー

母集団は3~10数人というところなのですね。
120人というのはあくまでも総数ですね。
偏差値を計算するのなら最低でも10人はほしいところですね。

評価者の評価姿勢を平均化するため偏差値を持ち込んで相対評価にするのは1つの方法ですが、他に複数評価者性、評価後のグループ討議による評価微調整(横にらみ調整)などを入れるとさらに客観化されると思います。

Qエクセル STDEVとSTDEVPの違い

エクセルの統計関数で標準偏差を求める時、STDEVとSTDEVPがあります。両者の違いが良くわかりません。
宜しかったら、恐縮ですが、以下の具体例で、『噛み砕いて』教えて下さい。
(例)
セルA1~A13に1~13の数字を入力、平均値=7、STDEVでは3.89444、STDEVPでは3.741657となります。
また、平均値7と各数字の差を取り、それを2乗し、総和を取る(182)、これをデータの個数13で割る(14)、この平方根を取ると3.741657となります。
では、STDEVとSTDEVPの違いは何なのでしょうか?統計のことは疎く、お手数ですが、サルにもわかるようご教授頂きたく、お願い致します。

Aベストアンサー

データが母集団そのものからとったか、標本データかで違います。また母集団そのものだったとしても(例えばクラス全員というような)、その背景にさらならる母集団(例えば学年全体)を想定して比較するような時もありますので、その場合は標本となります。
で標本データの時はSTDEVを使って、母集団の時はSTDEVPをつかうことになります。
公式の違いは分母がn-1(STDEV)かn(STDEVP)かの違いしかありません。まぁ感覚的に理解するなら、分母がn-1になるということはそれだけ結果が大きくなるわけで、つまりそれだけのりしろを多くもって推測に当たるというようなことになります。
AとBの違いがあるかないかという推測をする時、通常は標本同士の検証になるわけですので、偏差を余裕をもってわざとちょっと大きめに見るということで、それだけ確証の度合いを上げるというわけです。

Q±4σに入る確率について教えてください

ウィキペディアの検索より、
確率変数XがN( μ, σ2)に従う時、平均 μ からのずれがσ以下の範囲にXが含まれる確率は68.26%、2σ以下だと95.44%、さらに3σだと99.74%となる。
と分かりました。

そこで
4σ、


の場合確率はどうなるか教えてください。
よろしくお願い致します。

Aベストアンサー

Excel で NORMDIST を使い、平均 50、標準偏差 10 (いわゆる偏差値)で計算してみましたら、次のようになりました。

 σ 0.682689492137086
2σ 0.954499736103641
3σ 0.997300203936740
4σ 0.999936657516326
5σ 0.999999426696856
6σ 0.999999998026825
7σ 0.999999999997440
8σ 0.999999999999999
9σ 1.000000000000000

Excelの関数の精度がどの程度のものか分かりませんが、9σで100%になりました。

Q標準偏差について詳しい方お願いします

お世話になります。
標準偏差は平均からのばらつき・・とききますが、「標準偏差が大きい」「小さい」という、その目安がわかりません。

たとえば、50人の集団で平均年齢30歳、標準偏差1.2だったらどうでしょうか?

また、平均年齢が同じぐらいでも、標準偏差が1.0と10.0と違う2つの集団についていろんなデータを比べると、何か問題がありますか?

どちらかでもいいので、わかるかたがいましたらおねがいいたします。

Aベストアンサー

とりあえず、「標準偏差」の定義はURLを読んでいただくとして。

標準偏差は「分散」の平方根ですから、その集団の標準偏差が大きい
ということは、その集団のデータのばらつきが大きいということです。

とりあえず、以下の話は母集団が正規分布をするという仮定で行います。

仮に平均年齢が同じ30歳で、標準偏差が1の集団の場合、その集団には
28歳~32歳の人しかいない(95%程度の確率でその中にデータがある)
ということですし、標準偏差が10ならば35歳の人も結構フツーにその
中にいる(同じ確率では10~50歳になります)ということです。

逆に、例えばテストの点などを考えますと、同じ60点でも平均65点、
標準偏差5、の場合と平均70点、標準偏差10の場合では、どれだけ
違うか直接には比較出来ません。これらを「平均50、標準偏差10」
に換算して比較するのが「偏差値」の考え方です。
(上記の場合、どちらも同じ偏差値40になります)

ということで標準偏差は、ばらつきの度合いを平均値と同時にチェック
する時に使う値です。標準偏差の違う集団を直接に比較するかどうかは
その母集団の性質によって違いますよ。

参考URL:http://ja.wikipedia.org/wiki/%E6%A8%99%E6%BA%96%E5%81%8F%E5%B7%AE

とりあえず、「標準偏差」の定義はURLを読んでいただくとして。

標準偏差は「分散」の平方根ですから、その集団の標準偏差が大きい
ということは、その集団のデータのばらつきが大きいということです。

とりあえず、以下の話は母集団が正規分布をするという仮定で行います。

仮に平均年齢が同じ30歳で、標準偏差が1の集団の場合、その集団には
28歳~32歳の人しかいない(95%程度の確率でその中にデータがある)
ということですし、標準偏差が10ならば35歳の人も結構フツーにその
中にいる(同じ確率...続きを読む

Qデータが正規分布しているか判断するには???

初歩的なことですが。。急いでいます。
おわかりになる方 教えてください。
サンプリングしたデータが正規分布しているかどうかを確認するにはどうすればよろしいでしょうか。
素人でも分かるように説明したいのですが。。
定性的にはヒストグラムを作り視覚的に訴える方法があると思います。今回は定量的に判断する方法を知りたいです。宜しくお願いします。

Aベストアンサー

>機械的に処理してみるとできました。
>でも理屈を理解できていません。
 とりあえず、理屈は後で勉強するとして、有意水準5%で有意差あり(有意確率が0.05以下)であれば、正規分布ではないと結論づけてお終いでいいのではないですか。
>この検定をもっと初心者でもわかりやすく解説しているサイト等ご存じありませんか。
 私が知っている限りでは、紹介したURLのサイトが最も丁寧でわかりやすいサイトでした。
>データの区間を分けるときのルール等ありますでしょうか。
 ヒストグラムを作成する場合、区間距離、度数区分数は、正規的なグラフになるように試行錯誤で行うことが多い(区間距離や度数区分数を本来の分布に則するようにいろいろ当てはめて解釈する。データ個数の不足や、データの取り方、または見かけ上の分布によりデータのばらつきが正しく反映されて見えないことがあるため)のですが、度数区分数は、機械的に、
=ROUNDUP(1+LOG10(データ個数)/LOG10(2),0):エクセル計算式
で区分数を求める方法があります。
 また、区間距離は、=ROUND((データの最高値-最低値)/(度数区分数値-1),有効桁数)で求め、区分の左端は、
=ROUNDUP(データの最低値-区間距離/2,有効桁数)
右端は=ROUNDUP(データの最高値+区間距離/2,有効桁数)
とします。
 区間がと度数区分数が出たら、その範囲にあるデータ数を数えて、ヒストグラムができます。
 
>最小側、最大側は 最小値、最大値を含んだ値としなければならないのでしょうか。
 ヒストグラム作成の処理に関しては、上記を参考にしてください。
 その前に、データの最小値と最大値が、正しくとれたデータか検討するため、棄却検定で外れ値が存在するか否かを検定し、外れ値が存在しないと結論づけられたら、正規分布の検定を行ってみてください。もし外れ値が存在する可能性があれば、そもそも、そのデータの信頼性が失われます。サンプリング手法の再検討(データの取り方に偏りがなかったか、無作為に設定してデータを取っていたか等)をして、再度データを得る必要があります。また、そもそも検定する以前に、データ数が少ないと判断が付かなくなってしまいますので、データ数は十分揃える(少なくとも20~30個)必要もあります。

>機械的に処理してみるとできました。
>でも理屈を理解できていません。
 とりあえず、理屈は後で勉強するとして、有意水準5%で有意差あり(有意確率が0.05以下)であれば、正規分布ではないと結論づけてお終いでいいのではないですか。
>この検定をもっと初心者でもわかりやすく解説しているサイト等ご存じありませんか。
 私が知っている限りでは、紹介したURLのサイトが最も丁寧でわかりやすいサイトでした。
>データの区間を分けるときのルール等ありますでしょうか。
 ヒストグラムを作成する場合、区...続きを読む


人気Q&Aランキング