No.1ベストアンサー
- 回答日時:
Aの右辺の2つの「根号」の中身は、それぞれ因数分解ができて、それぞれ
(a-2)^2、(a+3)^2になります。
すると、「√(◯)^2」となり、根号が外せるのですが、◯の値に注意が必要です。
例えば、√(3)^2 と√(-3)^2
は普通に計算(2乗すると9、そのあと平方根をとる)するとどちらも「3」になりますが、「カッコの中身をそのまま取り出す」とやると、後者の場合に「-3」になってしまい、本来の結果と合わなくなります。
そこで、「√(◯)^2」= |◯|(絶対値)としてあげる必要があります。
(◯≧0 → ◯のまま、◯<0 → –をつける)
すると、A= |a-2|+|a+3|
となり、「絶対値の場合分けの問題」に変わります。
① a<-3 のとき
a-2<0、a+3<0なので、
絶対値を外すとき、両方とも「–」を付けてあげる必要があります。
A= –(a-2)–(a+3)
=-2a-1
② -3≦a≦2のとき
a-2<0、a+3≧0なので、
絶対値を外すとき、(a-2)のほうだけ「–」を付けてあげる必要があります。
A= –(a-2)+(a+3)=5
③ 2≦aのとき
a-2≧0、a+3≧0なので、
両方ともそのまま中身を取り出せます。
A= (a-2)+(a+3)=2a+1
また、0< a<1の時、上記よりA=5であり、| a-1| = -(a-1)である。
よって、A-2|a-1|
=5-2{-(a-1)}
=2a+4
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
おすすめ情報
人気Q&Aランキング
-
4
この問題を教えてください。な...
-
5
因数分解のマイナスのくくり方...
-
6
組み合わせ
-
7
逆三角関数の問題について
-
8
中学校2年生の連立方程式です。...
-
9
(x+1)3乗と (x2乗+1)(x+1)(...
-
10
(x-b)(x-c)(b-c)+(x-c)(x-a)(c-...
-
11
3x^3+8x^2+1=0 の解き方を教え...
-
12
等式2xの2乗-7x+8=(x...
-
13
2x^2+7x-3=0 の解き方を教えて...
-
14
1kgの10%は?
-
15
ε-δ論法による関数の連続性につ...
-
16
微分 不等式の証明 なぜ等号?
-
17
「区分的に連続」と「区分的に...
-
18
関数xの絶対的連続とは...
-
19
隔年と毎年の違いを教えてくだ...
-
20
固有値問題
おすすめ情報
公式facebook
公式twitter