2×2行列の逆行列はいわずと知れた、
A=
(a b)
(c d)
に対し
A^(-1)=1/(ad-bc) *
(d -b)
(-c a)
ですよね。

でも3×3行列Xの逆行列X^(-1)の一般式って教科書に載ってないんですよね。
具体的にXが数値的に与えられてるときは基本変形を使って
(X E)→…→(E X^(-1))
と逆行列を求める方法は示されてるのですが一般式となると載ってない。
これは書こうとするととんでもなく面倒な式になるからなのでしょうか?

X=
(x_11 x_12 x_13)
(x_21 x_22 x_23)
(x_31 x_32 x_33)

の逆行列、表せるのであれば教えてください。

このQ&Aに関連する最新のQ&A

行列 基本」に関するQ&A: 基本行列

A 回答 (1件)

> 3×3行列Xの逆行列X^(-1)の一般式って教科書に載ってないんですよね



そうですか、載っていないですか。さすがに書くのはちょっとだるいので、
載っているページを探してみました。

参考URLをどうぞ。

参考URL:http://www.cybernet.co.jp/products/matlab/inform …
    • good
    • 0
この回答へのお礼

あるんですね。しかも意外と簡単。意外でした。

ありがとうございました。

お礼日時:2001/07/19 18:03

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q(aのx乗−3)(aのx乗+8)の計算方法は、 =a^x × a^x − 3a^x + 8a^x +

(aのx乗−3)(aのx乗+8)の計算方法は、

=a^x × a^x − 3a^x + 8a^x +(−3)8

=a^x^2 + 5a^x −24

であっていますか?

Aベストアンサー

(a˟)ⁿ=a˟ⁿ=aⁿ˟ [ 例:a³˙²=a²˙³=a⁶ ]

このまま展開しても良いけどa˟=yとでも置けば
(y-3)(y+8))=y²+5y-24

y=a˟に戻すと
(a˟)²+5a˟-24

(a˟)²=a˟²=a²˟

∴a²˟+5a˟-24

Q(1)1/(1-x-x^2)=Σ(n=0~∞)a_n(x^n)に対して

(1)1/(1-x-x^2)=Σ(n=0~∞)a_n(x^n)に対して、a_0,・・・,a_10を求め、その規則性を見つけよ。そして、どうしてその規則性が成り立つのか説明せよ。

(2)(2-x)/(1-x-x^2)Σ(n=0~∞)a_n(x^n)に対して、a_0,・・・,a_10を求め、その規則性を見つけよ。そして、どうしてその規則性が成り立つのか説明せよ。

(3)(x^2)/(1-x-x^2-x^3)Σ(n=0~∞)a_n(x^n)に対して、a_0,・・・,a_10を求め、その規則性を見つけよ。そして、どうしてその規則性が成り立つのか説明せよ。

できるだけ、詳しく教えてください。お願いします。

Aベストアンサー

それぞれ部分分数分解し、出てきた部分分数を
a/(x-c) = (-a/c)/{ 1-(x/c) } = (-a/c) + (-a/c)(x/c) + (-a/c)(x/c)^2 + …
と等比級数に展開してから、x の次数ごとにまとめれば吉。

Q(再投稿)R^n∋A_1,A_2,…はΣ[k=1..∞]λ^*(A_k)<∞を満たす.∩[n=1..∞]∪[k=n..∞]A_kはLebesgue外測度0?

すいません。
http://okwave.jp/qa4327195.html
について再投稿です。


A:=∩[n=1..∞]∪[k=n..∞]A_kと置いて
今,AがLegesgue可測集合である事を示したい訳ですよね。
Lebesgue可測集合とはλをLebesgue外測度とする時,
{E;Eはn次元区間塊,E⊂∀S⊂R^n,λ(S)≧λ(S∩E)+λ(S∩E^c)}の元の事ですよね。
そこで疑問なのですがλはn次元区間塊全体に対して定義された写像ですよね。なのでλ(S∩E)とλ(S∩E^c)はそれぞれλ(E)+λ(E^c)で(∵E⊂∀S⊂R^n),一応は定義されているのですがλ(S)はSの採りようによってはλ(S)自体が定義されないという状況に陥ってしまいます(∵必ずしもSはn次元区間塊とは限らない)。
するとλ(S)≧λ(S∩E)+λ(S∩E^c)という不等式は意味を成さなくなります。
従って,AがLebesgue可測集合である事が示せなくなってしまいます。
Lebesgue可測集合の定義を勘違いしてますでしょうか?

すいません。
http://okwave.jp/qa4327195.html
について再投稿です。


A:=∩[n=1..∞]∪[k=n..∞]A_kと置いて
今,AがLegesgue可測集合である事を示したい訳ですよね。
Lebesgue可測集合とはλをLebesgue外測度とする時,
{E;Eはn次元区間塊,E⊂∀S⊂R^n,λ(S)≧λ(S∩E)+λ(S∩E^c)}の元の事ですよね。
そこで疑問なのですがλはn次元区間塊全体に対して定義された写像ですよね。なのでλ(S∩E)とλ(S∩E^c)はそれぞれλ(E)+λ(E^c)で(∵E⊂∀S⊂R^n),一応は定義されているのですがλ(S)はSの採りようによってはλ(S)自体が定義され...続きを読む

Aベストアンサー

とりあえず教科書を読む.
定義が分かってなければ何もできない.

>Lebesgue可測集合とはλをLebesgue外測度とする時,
>{E;Eはn次元区間塊,E⊂∀S⊂R^n,λ(S)≧λ(S∩E)+λ(S∩E^c)}の元の事ですよね。

こんなこと本当に書いてある?なんか読み落としているとか
説明の途中の何かだとか,勝手に創作してるとか?

>Lebesgue可測集合の定義を勘違いしてますでしょうか?
してる.
だって,それだったら「円」ですらルベーク可測じゃなくなる.

Qx^2+2ax-a^2=0 これを解くとx=-1-√2aと-1+√2a

x^2+2ax-a^2=0 これを解くとx=-1-√2aと-1+√2aになるみたいです。どういうふうに考えたら、この答えになるんですかね?ちなみにa>0です。

Aベストアンサー

x^2+2ax-a^2=0
x^2+2ax=a^2
x^2+2ax+a^2=2a^2
(x+a)^2 = 2a^2
x+a = ±(√2)a
x=-a±(√2)a

だと思いますけど。その答が間違っているのでは?

Q行列の証明です Aが正則の時 n←Nに対して(A^-1)^n=(A^-n)^-1の証明出来る方がいた

行列の証明です
Aが正則の時 n←Nに対して(A^-1)^n=(A^-n)^-1の証明出来る方がいたらお願いします!

Aベストアンサー

左辺がA^nの逆行列で有ることを示せば良い。

正則行列Bに対して異なる逆行列C, Dが存在すると
C=CE=CBD=ED=D で矛盾。従ってある正則行列に対して
その逆行列は1つしかない。

A^n(A^(-1))^n=A^(n-1)AA^(-1)(A^(-1))^(n-1)=
A^(n-1)(A^(-1))^(n-1)=・・・=A^2A^(-2)=AA^(-1)=E

なので (A^(-1))^nはA^nの逆行列 つまり (A^n)^(-1)


人気Q&Aランキング

おすすめ情報