問題「点(1.2)を通り傾き3の直線の方程式を求めよ」
というので、最初に思いついたやり方は

yー2=3(xー1)
y=3xー1

で先生はもう一通りあるというのですがなんでしょうか??
プリントより

y=3(x  )     ヒント(1.2)を解に持つ1次方程式をつくれ

A 回答 (3件)

ヒントからすると


    y = 3(x + a)    (aは定数)
という形を求めてるのではないでしょうか。
この式に x = 1, y = 2 を代入すると
    2 = 3(1 + a)
これを解くと a = -1/3 なので、2通り目の方程式とは
    y = 3(x - 1/3)
の事だと思います。
    • good
    • 0

y=3x+b (傾きは3とでているので)



2=3×1+b (xとyにそれぞれ1,2を代入)
b=-1

よって bは-1と判明したので
y=3xー1
    • good
    • 0

分数ではないでしょうか?

    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aと関連する良く見られている質問

Qx1=(1,1,1),x2=(1,1,-1),x3=(1,-1,-1)をC^3の基底,{y1,y2,y3}がその双対基底でx=(0,1,0)の時,y1(x),y

[問] ベクトルx1=(1,1,1),x2=(1,1,-1),x3=(1,-1,-1)をC^3の基底とする。
{y1,y2,y3}がその双対基底でx=(0,1,0)の時、
y1(x),y2(x),y3(x)を求めよ。

という問題の解き方をお教え下さい。

双対基底とは
{f;fはF線形空間VからFへの線形写像}
という集合(これをV*と置く)において、
V(dimV=nとする)の一組基底を{v1,v2,…,vn}とすると
fi(vj)=δij(:クロネッカーのデルタ)で定めるV*の部分集合
{f1,f2,…,fn}はV*の基底となる。これを{v1,v2,…,vn}の双対基底と呼ぶ。

まず、
C^3の次元は6(C^3の基底は(1,0,0),(0,1,0),(0,0,1),(i,0,0),(0,i,0),(0,0,i))
だと思うので上記のx1,x2,x3は基底として不足してると思うのです(もう3ベクトル必要?)。

うーん、どのようにしたらいいのでしょうか?

Aベストアンサー

>C^3の次元は6(

これが間違え.
「x1=(1,1,1),x2=(1,1,-1),x3=(1,-1,-1)をC^3の基底」
といってるんだから,係数体はRではなく,C.

あとは定義にしたがって,
dualな基底を書き下せばいいだけ.
y1(x1)=1,y1(x2)=y1(x3)=0であって
v=ax1+bx2+cx2と表わせるわけだし,
v=(v1,v2,v3)とすれば,a,b,cはv1,v2,v3で表現できる
#単なる基底変換の問題.

Q直線 x=-3-2t、y=4+t ...(1) と直線 x=-3+3t, y=-7+4t....(2)

問題1
直線 x=-3-2t、y=4+t ...(1) と直線 x=-3+3t, y=-7+4t....(2)のグラフを書き、その交点を求めよ。

問題2
直線(1)、(2)のなす角をΘ(0°≦Θ≦90°)とするとき、CosΘを求めよ。

問題3
直線(1)と(2)について、それぞれの方向余弦のうち、xの値が正であるものを求めよ。

⇔問題1はとけましたけど、問題2と3がわかりませんでした。

まず問題1は、x=-3-2t=-3+3s y=4+t=-7+4sとしました。sと置き換えたのは=とした時にtの値が同じとは限らないので、
結果
2t+3s=0 t-4s=-11となり、
t=-3、s=2となりました。
交点は(x、y)=(3.1)となりました(答)

問題2は
(1)の方向ベクトルと(2)の方向ベクトルがどのようにしたら求めてよいのか解らないのでとけませんでした。 いままで学んだ内容だと、二点P1(-1,3),P2(2,-1)をとおる媒介変数tを表せという問題をといてきて、
単純にp1p2=(x-x1,y-y1) をやって方向ベクトルをもとめ、x=x1+tl,y=y1+tmの公式にしたがってx=-1+3t,y=3-4tと方向ベクトルを求めていたのですけど、
今回はx-x1にあたる部分が題意を読んで何処なのかわかりませんでした。

題意のx=-3-2t、y=4+t (1)と(2)の式からx1の部分をー3、y1の部分を4とみるのでしょうか?
そうすると、x-x1、y-y1のx1とy1の部分はわかるのですけど、xとyが解らないので、引き算ができず、方向ベクトルが求まりませんでした。

答えをみるとl→=(-2,1)(1) m→=(-3、-4)(2)となってました。どうやったらこのように求まるのでしょうか?

問題3は手が付けられませんでした>_<

だれかこの問題詳しく教えてください、宜しくおねがいします!!>_<

問題1
直線 x=-3-2t、y=4+t ...(1) と直線 x=-3+3t, y=-7+4t....(2)のグラフを書き、その交点を求めよ。

問題2
直線(1)、(2)のなす角をΘ(0°≦Θ≦90°)とするとき、CosΘを求めよ。

問題3
直線(1)と(2)について、それぞれの方向余弦のうち、xの値が正であるものを求めよ。

⇔問題1はとけましたけど、問題2と3がわかりませんでした。

まず問題1は、x=-3-2t=-3+3s y=4+t=-7+4sとしました。sと置き換えたのは=とした時にtの値が同じとは限...続きを読む

Aベストアンサー

宿題かも知れませんが、きちんと自分でお考えのようなので。

(2)です。

直線(1)は、(x,y)=(-3,4)+t(-2,1)
直線(2)は、(x,y)=(-3,-7)+t(3,4)

と書けます。ということは、

直線(1)は、点(-3,4)を通って、ベクトル(-2,1)に平行な直線
直線(2)は、点(-3,-7)を通って、ベクトル(3,4)に平行な直線

ということなので、2直線のなす角θは、2つのベクトル(-2,1),(3,4)[←これって、それぞれの直線の方向ベクトルです。]のなす角と同じか、又は、「180°-なす角」です。すると、内積を考えて、

cosθ=(-2*3+1*4)/√(4+1)・√(9+16)
=(-2)/(5√5)
=(-2√5)/25

となります。cosがマイナスなので、θは90°よりも大きいことが判ります。今、0≦θ≦90°なので、求めたい値は、

cos(180°-θ)
=-cosθ
=2√5/25

となります。

答の中で、(2)の方向ベクトルを(-3,-4)としているのは、最初から0≦θ≦90°を考慮しているためです。

宿題かも知れませんが、きちんと自分でお考えのようなので。

(2)です。

直線(1)は、(x,y)=(-3,4)+t(-2,1)
直線(2)は、(x,y)=(-3,-7)+t(3,4)

と書けます。ということは、

直線(1)は、点(-3,4)を通って、ベクトル(-2,1)に平行な直線
直線(2)は、点(-3,-7)を通って、ベクトル(3,4)に平行な直線

ということなので、2直線のなす角θは、2つのベクトル(-2,1),(3,4)[←これって、それぞれの直線の方向ベクトルです。]のなす角と同じか、又は、「180°-なす角」です。すると、内積を考えて、

cosθ=...続きを読む

Q(y-x)dy/dx=y ヒント:u=(y-x)

こんにちは。
こんな簡単な微分方程式も解けない理系の大学生です。
本当に恥です。

(y-x)dy/dx=y ヒント:u=(y-x)
について解き方を教えてもらえないでしょうか。

x=y=0という解を一応出してみたのですが、いかんせん自信がありません。

(y-x)dy/dx=y...(1)

u=y-xより
y'=1=(dy/dx)

(1)より
y-x=y
x=0

yy'=y
y'=1
y=x
y=0

という考え方をしたのですが。
もう自信が全然なくて...

Aベストアンサー

(y-x)dy/dx=y

u=y-x

両辺を x 微分すると,

du/dx=dy/dx-1 故に,dy/dx=du/dx +1
これらを (y-x)dy/dx=y に入れると

u(du/dx +1)=u+x
u*du/dx +u=u+x
u*du/dx =x

この微分方程式を解くと,積分定数を c として,

∫u du =∫x dx + c

(1/2)u^2=(1/2)x^2 + c

この式に  を入れれば,

(1/2)(y-x)^2=(1/2)x^2 + c

(1/2)(y^2-2xy+x^2)=(1/2)x^2 + c

(1/2)x^2 が消えるので,

(1/2)(y^2-2xy)= c
(1/2)y(y-2x)= c

y(y-2x)= 2c

積分定数 2c を C と書くと

y(y-2x)=C

となり,y(y-2x)=C が微分方程式 (y-x)dy/dx=y の一般解です.

<検算>

y(y-2x)=C の両辺を微分すると,
y'(y-2x)+y(y-2x)'=0
y'(y-2x)+y(y'-2)=0
yy'-2xy'+yy'-2y=0
2yy'-2xy'-2y=0
yy'-xy'-y=0
(y-x)y'-y=0
(y-x)y'=y

となりますから,一般解 y(y-2x)=C 正しいです..

(y-x)dy/dx=y

u=y-x

両辺を x 微分すると,

du/dx=dy/dx-1 故に,dy/dx=du/dx +1
これらを (y-x)dy/dx=y に入れると

u(du/dx +1)=u+x
u*du/dx +u=u+x
u*du/dx =x

この微分方程式を解くと,積分定数を c として,

∫u du =∫x dx + c

(1/2)u^2=(1/2)x^2 + c

この式に  を入れれば,

(1/2)(y-x)^2=(1/2)x^2 + c

(1/2)(y^2-2xy+x^2)=(1/2)x^2 + c

(1/2)x^2 が消えるので,

(1/2)(y^2-2xy)= c
(1/2)y(y-2x)= c

y(y-2x)= 2c

積分定数 2c を C と書くと

y(y-...続きを読む

Qx^y=y^x (x>y)を満たす整数解は、x=4,y=2以外にありま

x^y=y^x (x>y)を満たす整数解は、x=4,y=2以外にありますか?

また、この解の求め方が分る方がいらっしゃったら教えて下さい。

Aベストアンサー

自然数の範囲で、やってみよう。

xのy乗 = yのx乗 = z が成立しているとする。
z の素因数分解を考えれば、
x と y の素因数は共通であることが解る。
素因数 p の x における指数を a、
y における指数を b と置くと、
p の z における指数から
ay = bx である。
x > y > 0 より、a > b と解る。
これが各 p で成り立つから、
x は y で割り切れる。

x = ky と置く。
x > y より、k > 1 である。
ここで、最初の式に戻ると、
zのy乗根 = kx = yのk乗 が成り立つ。
D(n) = (yのn乗) - ny と置くと、
任意の y に対して D(1) = 0 であるが、
y > 2 のときは、D(n+1) - D(n) = (y-1)(yのn乗) - y
> (yのn乗) - y ≧ 0 だから
n > 1 で D(n) > 0 となる。
従って、D(k) = 0 となる解があるのは、
y ≦ 2 に限られる。

y = 2 の場合を解く際も、
上記の考えをたどって、k = 2 に絞られるから、
(x,y) = (4;2) のみが得られる。

y = 1 を代入すると、x = 1 となって、
x > y より、これは解でない。

自然数の範囲で、やってみよう。

xのy乗 = yのx乗 = z が成立しているとする。
z の素因数分解を考えれば、
x と y の素因数は共通であることが解る。
素因数 p の x における指数を a、
y における指数を b と置くと、
p の z における指数から
ay = bx である。
x > y > 0 より、a > b と解る。
これが各 p で成り立つから、
x は y で割り切れる。

x = ky と置く。
x > y より、k > 1 である。
ここで、最初の式に戻ると、
zのy乗根 = kx = yのk乗 が成り立つ。
D(n) = (yのn乗) - ny ...続きを読む

Q格子点の個数 y=x・2^x にx=k(k=1.2.,,,. とかいてありますがk=1からだ

格子点の個数


y=x・2^x

にx=k(k=1.2.,,,.

とかいてありますがk=1からだと
格子点は(k.2)になりますよね?

どうゆうことですか

Aベストアンサー

No.2です。

>いやk=1
を代入すると
y=1・2^1になると思ったのです

それはそうなりますよ。k=1のときには。

だけど、解説では k=1 の場合でなく、一般の k のときの説明をしています。(k は 1~nの値をとり得る、と書いてあるだけで、誰も k=1 の話はしていませんよ)


人気Q&Aランキング

おすすめ情報