ウォーターサーバーとコーヒーマシンが一体化した画期的マシン >>

縦波と横波の本質的な違いはなんですか?

密度くらいしか違いがないような気が…

A 回答 (6件)

本質的?、本質みたいに見えるかもしれないが本質ではない、そういう意味です。


自身が何が本質か全くわかっていないのをごまかしている言葉です。
縦・横、日常生活では重力に平行な方向を縦、直交する方向を横といいます。
波・波動は媒質が振動することで、全体として変異情報を伝えます、この伝える(伝わる)方向を基準にして、媒質の振動方向を縦・横で表現しています。
伝える方向(進む方向)と平行=縦波、伝える方向(進む方向)と直交=横波
波動の本質?、というとほかにあるのかもしれませんが。
    • good
    • 0

横波には光にあるように進行方向に対する方向成分が二つあり得ます。

水面の波などは二次元波なので振動方向が一つしかありませんが、真空中や物質中を進む横波には直交する二つの振動方向があり得ます。
    • good
    • 0

もう十分回答は得られていますが,質問中の「密度」が気になったのでコメント加筆します。

弾性波の場合は,縦波の速度は√{(λ+2μ)/ρ} で,横波の速度は√(μ/ρ) です。ρが密度です。λとμはラメ定数です。ただし,釘の頭をトンカチで打ったときに釘の長手方向に伝わる波は縦波ですが,細長いことから速度は√(E/ρ) です。E はヤング率です。またバイオリンやピアノの弦の震動の速度は√{T/(Aρ)} で,T は弦に与えた張力で,A は弦の断面積です。地震が起きたとき,ある向きに押し・引きが地盤の中で起こったので,縦波も横波も発生します。向きはちょっと微妙ですが。そして縦波の方が早いのでまず到着して,そのあとの大きなゆれが横波です。それぞれ P 波・S 波と呼ばれます。Pressure, Primary の P,Shear, Secondary の S です。前者は非回転波とも呼び,後者は等体積波とも呼びます。
    • good
    • 0

例えば野球スタジアムで時々見かける、観客のウェーブをイメージしてください。


観客席の人たちがタイミングよく立ったり座ったりすることにより波が伝わっていくように見えます。
このとき波を伝える1人1人(媒質の1つ1つ)は上下方向に運動(振動)していて、波の伝わる向きとは垂直な方向に運動(振動)しています。これが横波
一方縦波(疎密波)は、媒質の運動(振動)方向が波の伝わる方向と平行です。あり得ない光景になりますが、スタジアムの観客で例えれば、1人1人がお隣同士で少しずつタイミングをずらして反復横跳びをしているような状況です。これによって媒質が密になっている部分が次々に先送りされ、伝わっていくように見えます。
    • good
    • 0

>縦波と横波の本質的な違いはなんですか?



どんな振動媒体が、どのように変位して振動するか、以外に「本質」なんてないと思います。
変位に対する復元力が、どちら方向にどれだけ大きく働くか、ということで決まります。

弦や糸は、「張力」の弾力で、糸の長さ方向から見て「横」に変位して振動するし、
音は、空気の「密度」の弾力で、音の進行方向から見て「縦」に変位して振動します。
弦や糸は「連続体」を保持する「束縛条件」が「横方向の変位」に対する復元力として働くが、空気は「束縛条件」が小さいので「横方向の変位」に対する復元力が小さいのでしょうね。

光だけは、そういう意味で「振動媒体」や「変位」「復元力」が定義できないので、「本質的」に違うかな。でも「横波」。
    • good
    • 0

いろいろな説明がありますが、


物質の振動に話を絞ると
シンプルなのは、振動の方向かな。
縦波は波の進行方向と平行に振動する。
横波は波の進行方向に垂直に振動する。

波が伝わるために使われる力は
縦波は圧縮応力
横波はせん断応力

液体や気体はせん断応力が小さいので
横波は殆ど、伝わりません。
    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aと関連する良く見られている質問

Q大学院レベルの物理(理論系)って独学不可能ですよね? いくら大学院は研究する場所だからといっても学ぶ

大学院レベルの物理(理論系)って独学不可能ですよね?
いくら大学院は研究する場所だからといっても学ぶこともあるしだろうし、大学院は専門的で狭く深くって感じなので書籍とかもなさそう
ちなみに大学レベルの物理学は独学可能とよく聞きます

Aベストアンサー

大学までの物理は基本的な知識を学ぶことが目標なので、教科書を読んで独学可能です。その際、微積分の解析学や、固有値問題などの線形数学やベクトル解析などの基本的な数学の知識も学ぶ必要があります。これも独学可能です。

一方、大学院では教科書に書いてあるようなことを学ぶのが目的ではなく、自分の関わった分野に対して、まだ人類が何も知らない新しい知見を提案するのが目的です。ですから、教科書を読むなどのいわゆるお勉強をいくらしても、その新しい知見を加えられるようにはなれません。その知見の加え方は、経験の積んだ研究者に一対一の直伝で伝授される以外にない。その場合、経験の積んだ研究者から、その分野で何が今だに解っていないか、また、いくらでもある解っていない問題の中で、どの問題が重要な問題か、あるいはどうでも良い問題かを直伝で教わる必要があります。そういう意味で、大学院の段階では独学は桁違いに効率が悪い。歴史に残るような抜きん出た頭脳の持ち主ならいざ知らず、そのような経験の積んだ研究者から指導なしでは、まず討ち死にすることは間違い無しです。そういう意味で独学は極端に難しいと言えます。

ところで、研究で一番難しいのは、その分野で何が今だに解っていないか、また、いくらでもある解っていない問題の中で、どの問題が重要な問題か、あるいはどうでも良い問題かを判断する能力です。それに比べて、一旦提起された問題を解決する能力は桁違いに易しいのです。

ですから、たとえ大学院に進んだとしても、問題の重要度を適切に判断できない先生に付いてしまうと、たとえ有名大学を出たという理由で食いっぱぐれの無い地位につけたとしても、良い研究成果を出せずに一生を終わってしまう可能性が大になります。その逆に、たとえ有名大学を出ていなくても、問題の重要度を適切に判断でる先生に運よく巡り会えた場合、大学院の段階ですでに良い研究成果を出すことすらできます。

大学までの物理は基本的な知識を学ぶことが目標なので、教科書を読んで独学可能です。その際、微積分の解析学や、固有値問題などの線形数学やベクトル解析などの基本的な数学の知識も学ぶ必要があります。これも独学可能です。

一方、大学院では教科書に書いてあるようなことを学ぶのが目的ではなく、自分の関わった分野に対して、まだ人類が何も知らない新しい知見を提案するのが目的です。ですから、教科書を読むなどのいわゆるお勉強をいくらしても、その新しい知見を加えられるようにはなれません。その知見...続きを読む

Qレーザーの実験をしたところ、レーザーは単色光なのにも関わらず、図のように屈折するごとに広がっていまし

レーザーの実験をしたところ、レーザーは単色光なのにも関わらず、図のように屈折するごとに広がっていました。なぜですか?

教えていただけるとありがたいです。お願いいたします。

Aベストアンサー

じゃあ、メーカーから製品情報を取り寄せて、レザー発振数のデータを見ましょう

たとえば、こちらの製品
コヒレントジャパン社のOBIS CellXという製品
405nmタイプで、製品誤差はプラスマイナス5nmありますので、400nm~410nmと厳密に言えば、単色ではありませんので、プリズムで分光させれば、光の幅が出来ます
また、プリズムの製品精度にもよりますし

http://www.coherent.co.jp/laser/asscw/multi/obis_cellx/index_2.php

Q励起状態の反対語

基底状態ってありますが、冷めたような状態を示す言葉はないでしょうか?
沈静化状態?  他にないでしょうか?

Aベストアンサー

自然科学の用語としては

励起状態= excited state
 ↓↑
基底状態= ground state

です。これは「エネルギー準位、エネルギーの状態」を表わす表現。

「excited」の反意語であれば「冷静な」「落ち着いた」という肯定的な意味と、「つまらない」「わくわくしない」「何もしない」という否定的な意味があるでしょうね。
 cool、calm、settled、quiet、sober、・・・

日本語だったら、使う場面によって
 冷静状態
 平静状態
 平穏状態
 沈静状態
 鎮静状態
 休眠状態
 休止状態
 消沈状態
 謹慎状態
 ・・・
などなど。

Q電気系の分野以外のどんなに簡単な問題から難しい問題までを先人の知恵や先人が導いた法則や公式を一切使わ

電気系の分野以外のどんなに簡単な問題から難しい問題までを先人の知恵や先人が導いた法則や公式を一切使わずに、実際に実験をしてグラフから求めたい力を求める人ってどう思いますか?
人から与えられたものを使わずに我流で物理を進めていくようなもので、
一つ一つ実験していくので公式を使ったりなど融通が効かないような気もしますが。
また、もし重力加速度を求める場合、今までにないような実験で導くとしたらどうしますか?

Aベストアンサー

まさにガリレオ=ガリレイのことなのだが。

QF=mgやオームの法則などの式はどのように単位を定めたり、実験したり、理論的に考えて導いたのでしょう

F=mgやオームの法則などの式はどのように単位を定めたり、実験したり、理論的に考えて導いたのでしょうか?
経緯が詳しく書いてある本やサイトはありますか?
重力加速度の実験に関しては加速度の単位を設定してから実験して、グラフから9.8m/s^2と導いたのか気になります。

Aベストアンサー

①法則はどうやって出来たのか?

F=ma が最終的にどうやってたどり着いたのかはわかりませんが、一般的には、

F*t 力とかけた時間で、
m*v 物体のもつ勢いみたいなものが生じる

とすれば、

Ft=mv
F=mv/t
= ma

のように不変化したのではないか?・・・って言いますね。(実際には、微分ですが簡潔にして・・・)
まあいずれにせよ、思考過程は、型になったプロセスではなく、思いつきだったり、思考の飛躍だったり、積み上げてたどり着いたりいろいろです。

思いつけば、実験をして確かめる・・・ってこともあるし、
実験がさきにあって、それを示す式を、知恵を絞って考える・・・ってこともある。

さまざなな人の努力の結果です。

②単位

まず、法則があろうとなかろうと、速度や、加速度は、定義がそのまま単位になる。
一方で、物理法則の結果、法則ができたら、すでにわかっている、時間、距離、速度、加速度などをあてはめ、新しい物理量の単位を想定し、
それが複雑なら、新しい定数で変換して、シンプルに数字を扱えるように単位を定めるってだけのことかと。単位はあくまでテクニック。
先に単位を決めることはなくって、法則がわかって、単位を割り当てるってこと。

ただ、今は、いろいろな単位がわかっているため、未知の法則を導き出すために、単位を比べて、辻褄をあわせ、単位から、法則を導くこともあります・・・・

>重力加速度の実験に関しては加速度の単位を設定してから実験して、グラフから9.8m/s^2と導いたのか気になります。

ちなみに、重力加速度・・・と言っている時点で

・ 万有引力の法則
・ 運動方程式

から、
・ 重力加速度は常に一定
・ 重力=質量*重力加速度

てことがすでにわかっているってことですね。なので、あとは、ものを落として、加速度を計測すれば、数値が出ますね。

①法則はどうやって出来たのか?

F=ma が最終的にどうやってたどり着いたのかはわかりませんが、一般的には、

F*t 力とかけた時間で、
m*v 物体のもつ勢いみたいなものが生じる

とすれば、

Ft=mv
F=mv/t
= ma

のように不変化したのではないか?・・・って言いますね。(実際には、微分ですが簡潔にして・・・)
まあいずれにせよ、思考過程は、型になったプロセスではなく、思いつきだったり、思考の飛躍だったり、積み上げてたどり着いたりいろいろです。

思いつけば、実験をして確かめる・...続きを読む

Qkg定義改定で、日本は何をしたのですか?

キログラムの定義改定が決まったというニュースを読みました。
ニュースの中で、「日本が総合力で優れているという証しだ」というコメントが紹介されていました。
けれど、日本が何をしたのかが書かれていません。
日本は何をしたのでしょうか?

Aベストアンサー

ここに解説されてるよ

https://www.aist.go.jp/aist_j/press_release/pr2017/pr20171024/pr20171024.html

思いっきりざっくりすれば、ナノメートル単位の測定を安定的に確実に行える技術を確立した

Q物理論文の作成指導を受けたい

私は、個人で物理論文を書いています。ユレイタスで論文発表を試みたのですが、失敗しました。失敗の理由は、「信じる」と言う単語を使ったのが、悪かったと言います。
私は、どうしても論文を発表したいと考えています。どなたか、論文作成の指導をして頂ける方を、紹介していただけないでしょうか。よろしくお願いします。

Aベストアンサー

>私は、どうしても論文を発表したいと考えています。

どうしても出したいと言うなら、お金を払えばどんな論文でも出せる雑誌というのがありますよ。
https://ja.wikipedia.org/wiki/%E6%8D%95%E9%A3%9F%E5%87%BA%E7%89%88
そんなにお金は出せないと言うなら、サイトでも解説して発表されればよろしいでしょう。

Q金属原子以外は常温で自由原子をもたないんですか?

金属原子以外は常温で自由原子をもたないんですか?

Aベストアンサー

自由電子は半導体にも存在します。むしろ、自由電子を有する物質は金属と半導体に分類できると言うことが出来るでしょう。半導体の自由電子は金属の自由電子に準じる特性を有しますが、決定的に異なる点もあります。
第1に、金属の自由電子の密度は、金属原子と同程度の値であって、その値は温度で変わりません(絶対零度でも変わらない)。ところが、純粋な半導体の自由電子の密度は、金属よりも圧倒的に少なく、しかも指数的な温度依存性があって低温になるほど密度が小さくなります。このため、零下20度程度でも動作しなくなる半導体素子もあります。反対に温度が高くなるとの自由電子密度が大きくなって、早晩、半導体素子の制御が出来なくなります。高電圧が加わっている場合には、破壊に至る熱暴走を引き起こすのが通例です。(さらに、半導体の自由電子の密度は、それに導入された不純物濃度に決定的に影響される特徴もあります)
第2に、金属の自由電子の運動速度は1,000km/s程度で、しかも温度依存性がありません(フェルミ速度と言われてます)。ところが、半導体の自由電子は熱エネルギーに相応する運動エネルギー(m v^2/2 = (3/2)kT)を有します(いわゆる熱速度: v≈ 100km/s @300K)。金属の自由電子よりも大幅に小さく、しかも温度の平方根に比例して小さくなります。

半導体の教科書には、もちろん第1の特性がもたらされる理由が説明されています。ところが、第2の特性についての説明がないのが不思議です。

自由電子は半導体にも存在します。むしろ、自由電子を有する物質は金属と半導体に分類できると言うことが出来るでしょう。半導体の自由電子は金属の自由電子に準じる特性を有しますが、決定的に異なる点もあります。
第1に、金属の自由電子の密度は、金属原子と同程度の値であって、その値は温度で変わりません(絶対零度でも変わらない)。ところが、純粋な半導体の自由電子の密度は、金属よりも圧倒的に少なく、しかも指数的な温度依存性があって低温になるほど密度が小さくなります。このため、零下20度程度でも...続きを読む

Q真空中の光速より早く情報を伝達することは可能? 長い棒があったとして、この端っこを押すと反対側の端っ

真空中の光速より早く情報を伝達することは可能?

長い棒があったとして、この端っこを押すと反対側の端っこは同時に飛び出しますが、これは一般的な感覚としては全く同時に思えます。

もしそうならば、光速より早く情報を伝達できているように思えます。
これはそうなのでしょうか?
それとも違うとすればどういう理由でしょうか?
人の目には同時に動いていように見えるけど、実際には同時ではなく、棒の端と反対側の端では遅れがあるということでしょうか?

Aベストアンサー

例えば長さ 1m の金属棒の端を押すと、端の動きが反対側の端に伝わるまで
0.2ms(5千分のー秒)とかそのくらいのオーダーの時間がかかります。
これは「実測」されている値です。

0.2 ms は人間には関知不能の短さですが、光は1 mを10億分の3. 3秒で
駆け抜けます。比較になりません。

例えば月まで鉄棒もし渡せたとすると、
地球で端を押すと月側の端が動くのは18時間後(^-^;
光なら1.3秒です。

Q量子数のスピンとは何ですか。

ググっても難しくてよくわかりません。なるべくわかりやすく教えてください。

Aベストアンサー

No,13の補足。黒い軸の周りの回転は、磁場が0の時は止まるので、赤い矢印は一定の向きをむきます。しかし、赤い矢印は角運動量だから、赤い矢印の周りを回転する運動があると考えられる。それについての考察があるが、それは非公開情報なので、今は公開できません。


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング