AIと戦って、あなたの人生のリスク診断 >>

解き方と解説教えてください。

「解き方と解説教えてください。」の質問画像

A 回答 (3件)

四角形の辺AD=15cmだから、斜線の大きい円の面積は56.25Πcm²、斜線の小さい方は16πcm²


四角形の面積は120cm²これらの合計から白い円の面積を引いた値が斜線の面積です。
120+72.25Πー72.25Π=120cm²になります。
    • good
    • 0

示された図で考えると、


(長方形に外接する半円4つの面積 ※ここで、長方形ABCDを含まないことに注意!)
ー(長方形ABCDに内接する円の面積 ※大きい白い円の部分)
+(長方形ABCDの面積 ※含まない部分を引きすぎてしまったため、また足します)
ここで、長方形ABCDは白い円に内接するので、BD=直径=17cm。
すると、△ABCにおいて三平方の定理から、BC=√(17^2-8^2)=15
あとは計算して見てください。
    • good
    • 0

中の円の部分を取り除く.

    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aと関連する良く見られている質問

Q数学です。 この円の、赤の斜線の面積ってどうやって求めるんですか?

数学です。
この円の、赤の斜線の面積ってどうやって求めるんですか?

Aベストアンサー

計算が面倒なので、解き方だけでいいですか?
赤の斜線の上の円の半径を求めないと解は得られません。
赤の斜線の上の円の半径は2つの弧の中点からそれらの弦へ垂線を下して、2つの垂線の交点までがその半径になります。
赤の斜線の上の円の弧の中点から弦を通る直線をy軸とし、弦をx軸として、赤の斜線の上の円の弧と赤の斜線の上の円の弧の中点を結ぶ直線はy=44/129x+22です。
この直線の中点を通りy=44/129x+22に垂直な直線はy=-129/44x+bです。
この直線は中点(ー129/4,11)を通るので11=129²/176+bからb=ー14705/176
距離は正の値なので半径r=|b|=14705/176です。
次に赤の斜線の上の円の弦の長さから、余弦定理でcosθをもとめ、更にθを求めると赤の斜線の上の円の弧部分の面積が
求まります。そこから二辺rの二等辺三角形の面積を除けば、赤の斜線の面積が求まります。

Q計算の問題でどうしてこうなるのかわかりません(どうしてこうなった?の部分)

計算の問題でどうしてこうなるのかわかりません(どうしてこうなった?の部分)

Aベストアンサー

r^6=(r^3)^2 だから、 r^6-1 を a^2-b^2=(a+b)(a-b) を利用して因数分解すればよい

あとは、約分

Q√の整数部分を求める問題では √〇を少数に戻すと聞いたのですが、具体的にどう戻すんですか?

√の整数部分を求める問題では
√〇を少数に戻すと聞いたのですが、具体的にどう戻すんですか?

Aベストアンサー

前の質問の補足にもなりますが、√23のルートを外すには計算機に頼るか、開閉の筆算をするという方法などがあります。
でも筆算(機械に頼らない方法)はそのやり方自体複雑でマスターするのに手間がかかるかと思います。
そのような理由があるからなのか、高校で√23のルートを外す方法を教えている所は少ないと思います.。
ですので、
√23=4.○○○○○・・・ 
とうように小数部分は曖昧に書かせていただきました。
ちなみに、計算機によると√23=4.79583152 になるようです。
これを手で(筆算で)計算するとなると非常に面倒です。
また、暗記するのもナンセンス。
けれども
4<√23<5・・・①から
その整数部分は4であることは簡単に分かるのです。
4=4.000000・・・(以下どこまでも0が続く)
5=5.000000・・・(以下どこまでも0が続く)
ですから4<√23(4より√23の方が大きい)なら
√23は4.00000・・・01以上であるわけです。・・・(A)
(そうじゃないと4より√23の方が大きい とはならないから
→→√23も√23=4.000000・・・(以下どこまでも0が続く)なら √23は4とまったく同じで√23=4という事になってしまいますし、まして√23=3.●●●・・・●(●には0から9までの数字のいずれかが入る)だとすれば √23は4より小さいとなってしまうのでいずれの場合も①に不適合です)
また、√23<5(√23より5の方が大きい)なら
√23=5.●●●・・・●(●には0から9までのいずれかの数字が入る) では前記同様に考えて①に不適合なのです。
√23<5(√23より5の方が大きい)なら
√23は4.99999・・・(以下9がどこまでも続く)以下という事になります。・・・(B)
(A)(B)をあわせ考えると√23=4.●●●・・・●(●には0から9までのいずれかの数字が入る。ただし●すべてが0ということではない)
ということになり、小数部分は曖昧ですが整数部分は4であることがはっきりします。

画像の問題の場合も同様に考えられます。
2<√6<3・・・② であることを突き止める方法はマスターされたと思います。
②(2より大きく3より小さい)なら√6は
2.0000・・・01以上、2.99999・・・9以下ということになりますからその小数部分ははっきり分からずとも
整数部分は2ということは分かるのです。
(ちなみに、 √2≒1.41421356・・・ひとよひとよにひとみごろ
√3≒1.7320508・・・ひとなみにおごれや
√5≒2.2360679・・・ふじさんろくおーむなく
√6≒2.44949・・・・  によよくよく
√7≒2.64575・・・  なにむしいない
受験生なら、これらはごろ合わせで暗記しておくべきです)

前の質問の補足にもなりますが、√23のルートを外すには計算機に頼るか、開閉の筆算をするという方法などがあります。
でも筆算(機械に頼らない方法)はそのやり方自体複雑でマスターするのに手間がかかるかと思います。
そのような理由があるからなのか、高校で√23のルートを外す方法を教えている所は少ないと思います.。
ですので、
√23=4.○○○○○・・・ 
とうように小数部分は曖昧に書かせていただきました。
ちなみに、計算機によると√23=4.79583152 になるようです。
これを手で(筆算で)計算するとなると非常...続きを読む

Q数1 sinθcosθtanθ

(1)がわかりません

Aベストアンサー

△AECで、余弦定理より
cosA={(√3x)^2+1^2-x^2}/2・√3x・1=(2x^2+1)/2√3x  ・・・・・・ ①

△ABCで、余弦定理より
coaA={(√3x)^2+3^2-(x/√3)^2}/2・√3x・3=(8x^2+27)/18√3x  ・・・・・・ ②

①=② を解けばよい

Q解無しとかってどうやって判断するんですか?

解無しとかってどうやって判断するんですか?

Aベストアンサー

上の例なら
y=x²-14x+49とするとそのグラフは画像のようになる
ここで、このグラフ上にx座標がtである点Pを考える
Pのy座標はy=x²-14x+49にx=tを代入してt²-14t+49であるから
Pの座標は(t,t²-14t+49)である。
でも、文字の種類が何であろうと本質は変わらないから、tを使わずに文字xのままで
放物線y=x²-14x+49上の点Pの座標は(x,x²-14x+49)であると言っても大差はない。
すると、問題の不等式
x²-14x+49<0 の意味は 「(Pの)y座標が0より小さい」ということになる。
これを画像のグラフに移してみると見てみると、「y座標が0より小さくなるような点Pの位置は?」と言う意味になる
しかし、最も低い位置にあるグラフの頂点(7,0)でさえも、y座標=0(0より小さくはない)なので、このグラフにはy座標が0より小さくなるような点Pの位置は存在しない。
つまり、グラフから不等式に戻れば該当するxは無い⇒解無し となります。

同様に考えて 仮にx²-14x+49=0ならば
グラフでは「y座標=0となるような点Pの位置は?」と言う意味になるので
そのような位置はグラフでは(7,0)
式に戻れば該当するxは、x=7(重解) となります。

さらに、仮にx²-14x+49>0ならば
「y座標が0より大きくなるような点Pの位置は?」と言う意味ですから
そのようなPの位置はグラフから(7,0)を除いた全域となり
不等式に戻れば 該当するのはx=7を除く全域⇔x<7,x<x となります。

下の画像の式も同じ要領で考えることが出来ます。^-^

上の例なら
y=x²-14x+49とするとそのグラフは画像のようになる
ここで、このグラフ上にx座標がtである点Pを考える
Pのy座標はy=x²-14x+49にx=tを代入してt²-14t+49であるから
Pの座標は(t,t²-14t+49)である。
でも、文字の種類が何であろうと本質は変わらないから、tを使わずに文字xのままで
放物線y=x²-14x+49上の点Pの座標は(x,x²-14x+49)であると言っても大差はない。
すると、問題の不等式
x²-14x+49<0 の意味は 「(Pの)y座標が0より小さい」ということになる。
これを画像のグラフに移してみると見てみる...続きを読む

Q100の(2)なんですか?

100の(2)なんですか?

Aベストアンサー

BCとy軸の交点をm、EFとy軸の交点をnとする。点mはBCの中点だし、nはEFの中点である。
放物線の式は y=ax^2 である。
点Cのx座標をtとすると、以下のようなことがわかる。
点Cのy座標はat^2
点Fのx座標は(3/2)t、y座標は(9/4)at^2 →BC:EF=2:3より
点mの座標は(0、at^2) →点mのy座標=点Cのy座標
点nの座標は(0、(9/4)at^2) →点nのy座標=点Hのy座標=点Fのy座標・・・①
点Hの座標は((1/2)t、at^2+(√3)・t/2 ) →mC:AC:Am=1:2:√3 かつ On=Om(=点Cのy座標)+mn(=Amの半分)より。・・・②

ここで、点Hのy座標に注目して、①と②を比較すると、
at^2+(√3)・t/2=(9/4)at^2 なる式が導かれる。
これを解いて、a=(2√3)/(5t) なる式が導かれる。

(1) BC=2cmのとき、aの値を求めなさい。
添付ファイルの左を参照のこと。
これは、t=1の時なので、上記の式に代入する。
答え:a=(2√3)/5

(2)添付ファイルの右を参照のこと。
a=(2√3)/(5t)なる関係があるので、a=√3/5であれば、t=2である。
①BCの長さ=2t=4 答え:4cm
②証明は省略するが、実はこの図形は緑色の小さい正三角形が集まった図形である。そして、当該図形にはこの緑色の小さい三角形は12個ある。だから、半分の6個になることになる。例えば、直線CRで2分割した場合は右上:左下=5:7の面積比になる。
ここで、RS:SQ=1:2なる点Sをとると、△CRSは緑色の小さい三角形1個分の面積になる。
①でBC=4cmと求まったので、Qのx座標は-2、Rのx座標は-1なので、Sのx座標は-4/3 答え:-4/3
----------------
②は、小さい緑の三角形で区切られることに気づくかどうかで解答できるかどうかが決まるような気がする。

BCとy軸の交点をm、EFとy軸の交点をnとする。点mはBCの中点だし、nはEFの中点である。
放物線の式は y=ax^2 である。
点Cのx座標をtとすると、以下のようなことがわかる。
点Cのy座標はat^2
点Fのx座標は(3/2)t、y座標は(9/4)at^2 →BC:EF=2:3より
点mの座標は(0、at^2) →点mのy座標=点Cのy座標
点nの座標は(0、(9/4)at^2) →点nのy座標=点Hのy座標=点Fのy座標・・・①
点Hの座標は((1/2)t、at^2+(√3)・t/2 ) →mC:AC:Am=1:2:√3 かつ On=Om(=点Cのy座標)+mn(=Amの半分)より。・・・②

ここで、点Hのy座標...続きを読む

Q高校の数学1 2次方程式 ルートの中の文字

高校の小テストで、以下のような問題が出たのですが、判別式をやったあと どうすればいいのかわかりません。
ルートの中に mがずっといるのですが、どうやって いなくならせますか?

2次方程式 x^2-3mx+18√m=0 がm>0で実数解を持つとき mの範囲を求めよ。

そもそも 私の解き方ってあってますか?
私がやったのは、
判別式を使って、
9m^2-72√m ≧0
9( m^2-8√m) ≧0
にしました。
でも ルートの中に mがずっといます。

よろしくお願いいたします。

Aベストアンサー

9m^2-72√m ≧0  
9( m^2-8√m) ≧0   (1)

m>0より式(1)は


 m^2≧8√m


両辺を2乗して

 m^4≧64m

両辺をmで割って

 m^3≧64

を得る。よってmは

  m≧4

Q高1の数学です。 この答えであっていますか??? よろしくお願いします。

高1の数学です。
この答えであっていますか???
よろしくお願いします。

Aベストアンサー

過去問に有りました。合ってますね。
https://detail.chiebukuro.yahoo.co.jp/qa/question_detail/q13168283903?__ysp=MTAwbembouOCjOOBnzLlnLDngrlCLEPjgYvjgonjgIHmsJfnkINB

Qこの問題がどうしても解けません。どなたか解説お願いしますm(_ _)m

この問題がどうしても解けません。どなたか解説お願いしますm(_ _)m

Aベストアンサー

(x0,y0,z0)を基準として、VectorA(x1-x0,y1-y0,z1-z0), VectorB(x2-x0,y2-y0,z2-z0), VectorC(x3-x0,y3-y0,z3-z0)とします。
四面体の体積をVとすると、ベクトル表示における四面体の体積の公式より、

V=(1/6)|(VectorA×VectorB)・VectorC| (×:外積、・:内積、| |:絶対値)

になります。
あとは、外積、内積を展開すれば、四面体の体積Vを(x0,y0,z0), (x1,y1,z1), (x2,y2,z2), (x3,y3,z3)で表すことができます。

問題に書かれている行列は、余因子展開を用いて展開することができます。
書くのが大変なので、詳しくは以下のサイトを参照して下さい。

https://risalc.info/src/determinant-four-by-four.html

これを計算すると、四面体の体積Vと等しくなります。

Qこれの答えってどうなりますか?

これの答えってどうなりますか?

Aベストアンサー

各項が、「等差数列」の項と「等比数列」の項の積になっています。

こういうものは、「等比数列」の公比をかけたものとの「差」をとると、「公差」がうまいこと「定数」になってくれるものが多いです。

やってみれば、求める数列の和は
 Sn = 1*1 + 3*2 + 5*2^2 + 7*2^3 + ・・・・ + (2n - 1)*2^(n - 1)

これに「公比:2」をかけてみると
 2Sn = 1*2 + 3*2^2 + 5*2^3 + 7*2^4 + ・・・・ + (2n - 1)*2^n

この差をとると
 Sn - 2Sn
= 1*1 + (3 - 1)*2 + (5 - 3)*2^2 + (7 - 5)*2^3 + ・・・ + [ (2n - 1) - (2n - 3) ]*2^(n - 1) - (2n - 1)*2^n
= 1*1 + 2^2 + 2^3 + 2^4 + ・・・ + 2^n - (2n - 1)*2^n

これが
 Sn - 2Sn = -Sn
になるので、
 Sn = (2n - 1)*2^n - (2^2 + 2^3 + 2^4 + ・・・ + 2^n) - 1
  = (2n - 1)*2^n - 2(2^1 + 2^2 + 2^3 + ・・・ + 2^(n - 1)) - 1

カッコの中は、「初項 2、公比 2 の等比数列の和(項数は (n - 1) )」なので、
 2^1 + 2^2 + 2^3 + 2^4 + ・・・ + 2^n = 2(2^(n - 1) - 1)/(2 - 1) = 2^n - 2
なので

 Sn = (2n - 1)*2^n - 2*(2^n - 2) - 1
  = (2n - 1)*2^n - 2^(n + 1) + 4 - 1
  = [ (2n - 1) - 2 ]*2^n + 3
  = (2n - 3)*2^n + 3

各項が、「等差数列」の項と「等比数列」の項の積になっています。

こういうものは、「等比数列」の公比をかけたものとの「差」をとると、「公差」がうまいこと「定数」になってくれるものが多いです。

やってみれば、求める数列の和は
 Sn = 1*1 + 3*2 + 5*2^2 + 7*2^3 + ・・・・ + (2n - 1)*2^(n - 1)

これに「公比:2」をかけてみると
 2Sn = 1*2 + 3*2^2 + 5*2^3 + 7*2^4 + ・・・・ + (2n - 1)*2^n

この差をとると
 Sn - 2Sn
= 1*1 + (3 - 1)*2 + (5 - 3)*2^2 + (7 - 5)*2^3 + ・・・ + [ (2n - 1) - (2n - 3) ]...続きを読む


人気Q&Aランキング