(1)
AB=2AC,cosA=9/16の△ABCにおいて、
BCを直径とする半円をBCに関して頂点Aと反対側に作る。
辺BCを2:1に内分する点をPとし、
直線APと半円との交点をQとする。
AQベクトル=αABベクトル+βACベクトルとするとき、
αの値とAP:PQの比を求めよ。

この問題であと少しで解けそうな所までいったんですけど
αとβの2次方程式がでてきて、しかも因数分解できません。
CQ⊥BQを用いてα、βの値を出そうと思って
ABベクトル・ACベクトル=lABl×2lABl×cosA=9/8lABl2乗
lACl2乗=4lABl2乗という風にlABlを基準にして解いたら
α2乗+α(9/4β-17/8)+4β2乗-41/8β+9/8=0
という式がでてきました。
分数が入っていて分かりにくいので頭パニックです。
どこが違っているのか、アドバイス下さい。


(2)
△ABCにおいて、∠Aの2等分線と辺BCの交点をDとし、
その外接円の中心をOとする。
AB=2、AC=3、∠A=θ、1/2ABベクトル=bベクトル、
1/3ACベクトル=cベクトルとするとき、
AOベクトルをbベクトル、cベクトル、θで表せ。

これも途中の式で頭がパニックになりました。
AB、ACの中点をそれぞれM、NとするとOM⊥AM、ON⊥AN
AOベクトル=sbベクトル+tcベクトル(s・tは実数)とおく
lAMl=lANl=lmlとするとlbl=lml、lcl=2/3lmlとかける
bベクトル・cベクトル=2/3lml2乗cosθ
lbl2乗=lml2乗
lcl2乗=4/9lml2乗
以上より
lml2乗(1-s-2/3tcosθ)=0
lml2乗(-scosθ+1-2/3t)=0
それぞれ両辺lml2乗で割ったあとから分からなくなりました。
どこが間違っているのか、アドバイス下さい。

このQ&Aに関連する最新のQ&A

A 回答 (3件)

まず(2)について


>どこが間違っているのか、アドバイス下さい。
合っていますよ。
ただ高校生なら誰でも1度は勘違いするポイントがあって
そこでつまずいているだけです。
よーく問題文を見てください。
>AOベクトルをbベクトル、cベクトル、θで表せ。
θで表せ、とあるでしょう。
つまり、答えの中にθが入っていてもいいよ、
と出題者は言っているのです。
もっというと、答えの中にcosθやsinθやtanθが入っていてもいい、のです。
ですから、
1-s-2/3tcosθ=0
-scosθ+1-2/3t=0
をs,tの連立方程式とみて普通に解けばいいんですよ。
上の式よりs=1-2/3tcosθなのでこれを下の式の代入して整理すると
(2cosθ^2-2)t=3cosθ-3
よって、
t=3(cosθ-1)/2(cosθ^2-1)=3/2(cosθ+1)
(分母を因数分解するとcosθ-1で割れますね。)
またs=cosθ/(cosθ+1)
と分かります。これを
AOベクトル=sbベクトル+tcベクトル
に代入すればOKです。

(1)について
chemistryさんは
>CQ⊥BQを用いてα、βの値を出そうと
したようですが、この条件だけでは残念ながら答えは出ません。
CQ⊥BQという条件は点Qは円周上にあるよ、
といっているだけですから点Qの位置が特定できませんね。
それにα、βという2つの分からないものを求めたいのですから
条件が2つ、つまり方程式が2つ必要です。
(これ大事です。問題を解くときには常に次のことを意識すると良いですよ。
未知数の数と同じ個数の方程式が(普通は)作れるはず)
そこで点Qの位置を決める条件を考えますと
1つは、点Qが円周上にあるための条件
もう1つはnikorinさんのおっしゃるように
3点A,P,Qが一直線上にあるための条件
ですね。
nikorinさんのようにCQ・BQ=0をkで表してもよいですし、
2つ目の条件はβ=2αと表せますから、それをchemistryさんの努力の結晶の
>α2乗+α(9/4β-17/8)+4β2乗-41/8β+9/8=0
に代入しても答えが出ます。
なお、点Qが円周上にあるための条件は
半円の中心をMとして
MQ=BCの半分の長さ
ととらえてもOKです。
ただし、いずれの方法も超めんどくさい計算を経て
2次方程式がでてきますが、因数分解できず
めちゃめちゃ汚い答えになります。
こういう問題は多少の計算ミスは気にしなくていいと思いますよ。

長々と書いてしまってごめんなさい。
    • good
    • 0

(1)のヒント


APとAQは同一直線状にあるから、AQ=kAPと書けますよね。
これを使うと、CQ・BQ=0はkだけで表せますよ。
    • good
    • 0

今考え中ですが、困り度3と言うことで気づいたところまで、


>AB=2AC,
>...
>lACl2乗=4lABl2乗
逆では?
4lACl2乗=lABl2乗
    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q△ABCにおいて、AB=5, AC=4, cosA=-5/1である。 ⑴辺BCの長さを求めよ BC=

△ABCにおいて、AB=5, AC=4, cosA=-5/1である。

⑴辺BCの長さを求めよ
BC=7

⑵△ABCの外接円の半径を求めよ

Aベストアンサー

(1)
a^2=b^2+c^2−2bc・cosA ← 余弦定理を使ってBCを求める
b=AB=5,c=AC=4,cosA=-1/5 とすると BC=aは
a^2=25+16-2・5・4(-1/5)
=25+16+8=49
a=BC=7

(2)
(cosA)^2+(sinA)^2=1 ← 三角関数の基本公式を使ってsinAを求める。
(sinA)^2=1-(cosA)^2
(sinA)^2=1-(-1/5)^2=24/25
sinA=√(24/25)=2√6/5 ← sinAが求まった
2r=a/(sinA)=7/(2√6/5) ← 正弦定理を使って、外接円の半径を求める
r=35/(4√6)=35√6/24

Q異なる4点A(α)、B(β)、C(γ)、D(δ)で、|α|=|β|=|γ|=|δ|、α+β+γ+δ=

異なる4点A(α)、B(β)、C(γ)、D(δ)で、|α|=|β|=|γ|=|δ|、α+β+γ+δ=0のとき、A、B、C、Dを頂点とする四角形が長方形になることの証明を、どなたかお願いします。

Aベストアンサー

(1) 2次元ユークリッド平面上のベクトルの話だという限定を付けないと、長方形にはならない。(3次元なら、たとえば原点に重心がある正四面体の頂点がα,β,γ,δでも条件を満たすでしょ。)
(2) |α|=0の場合は例外だし、α,β,γ,δのうちに同じものが含まれる場合も例外。
ということに注意した上で
(3) |α|=|β|=|γ|=|δ|=1の場合に証明すれば、他の場合は自明なので、=1の場合だけ考える。
(4) x = (α+β) とすると、αとxがなす角θはxとβがなす角と同じ。
(5) (γ+δ) = -xでなくちゃならない。で、γとxがなす角ξはxとδがなす角と同じ。
あとはθ=ξを示せばよかろ。

Q関数f(x)=2x^3+3px^+3px-3p^/2は、x=αで極大値f(α)を、x=βで極小値f(β)をとる。

関数f(x)=2x^3+3px^+3px-3p^/2は、x=αで極大値f(α)を、x=βで極小値f(β)をとる。ただし、pは実数とする。

という問題で、

1)pのとりうる値の範囲を求めよ。 A. p<0,2<p
2)f(α)+f(β)をpを用いて表せ。 A.f(α)+f(β)=p^3-6p^

まではできました。答えもあっているはずです。ですが、

3)2点(α,f(α)),(β,f(β))を結ぶ線分の中点の軌跡を求めよ。

という問題がどうしても解けません。
どなたかご教授下さい。お願いします。

Aベストアンサー

中点の軌跡の座標を (X , Y) とすると、
X = ( α + β ) / 2
Y = ( f(α) + f(β) ) / 2

α + β = - p
f(α) + f(β) = 問 2)より、

上 2 式から、p を消去すれば、軌跡の方程式が求まります。
また、問 1) の p の範囲から、x の範囲も考慮する必要があります。

Q上低 AD=2、下底 BC=3、AB=1,∠B=60°の台形ABCD

上低 AD=2、下底 BC=3、AB=1,∠B=60°の台形ABCDがある。BC→の向きの単位ベクトルをu→、BA→の向きの単位ベクトルをv→とするとき
(1)BD→、CD→をu→、v→で表せ
(2)BD→、CD→のなす角をαとしてSinαを求めよ。
(3)また、AD,CDの中点をそれぞれM.Nとするとき、BD→・MN→を求めよ。

→回答
(1)はとけました。 こたえはーu→+v→です。
(2)もとけました。
(3)がとけませんでした。

(3)の回答を教科書で確認したら、
BD・MN=(v→+2u→)・(3/2×U→ー1/2 ×v→)と式が出来てました。

BDは(1)BA+ADを求めると、(図をかいてみると解りました)v→+2u→となるのがわかったのですけど、MNがどうして(3/2)U -(1/2)vとなるのか解りませんでした。どなたか教えてください。
宜しくお願いします!!>_<

Aベストアンサー

MN→=BN→-BM→・・・(1)です。
MはADを1:1に内分するから、分点のベクトルの公式で
BM→=(BA→+BD→)/2・・・(2)
同様に、NはCDを1:1に内分するから、
BN→=(BC→+BD→)/2・・・(3)
(2),(3)を(1)に代入すると、
MN→=(BC→+BD→)/2-(BA→+BD→)/2
   =(BC→)/2-(BA→)/2
ここで、BC→=3u→、BA→=v→なので、
MN→=(3/2)u→-(1/2)v→  となります。

QAB=√3、AC=√2、COSA=1/√6のような△BCにおいて

AB=√3、AC=√2、CosA=1/√6のような△ABCにおいて、AB→=b→、AC→=c→とし、頂点Aから対辺BCに引いた垂線をADとするとき、AD→をb→、c→で表せ。 また垂心をHとして、AH→をb→、c→で表せ。


この問題、途中までとけましたけど、最後がとけませんでした。。

BD:DC=K:(1-K)とおき、
AD⊥BCからKの値を求めるやりかたで
AD=(1-K)√3+K√2 OR AD=(1-K)b+kc
BC=CA+AB⇒-√2+√3 OR -c+b

AD・BC, {(1-K)b+kc}(-c+b) ( ⊥なので)
{(1-k)b・-c+(1-k)b・b+kc・-c+kc・b}

b・b=|b|^2=3
c・c=2
b・c=|b||c|cosA=1 以上より

AD=(1/3)b→+(2/3)c→ となりました。

この後が求められません。
このあとは、AHを求めないとだめなのですけど、

ヒントとしては、
AH→=lAD→とおき、BH→⊥AC→からlを求める。。って書いてあるのですけど、良く解りません。
BHは、BH=HA+ABとするのですか?
ACは=Cもしくは、√2をつかうのですか?
これらより、式をつくるのでしょうか?
lを求めるって部分もちょっと良くわかりませんでしたので、式も造る事ができませんでした。

どなたか教えてください>_<

AB=√3、AC=√2、CosA=1/√6のような△ABCにおいて、AB→=b→、AC→=c→とし、頂点Aから対辺BCに引いた垂線をADとするとき、AD→をb→、c→で表せ。 また垂心をHとして、AH→をb→、c→で表せ。


この問題、途中までとけましたけど、最後がとけませんでした。。

BD:DC=K:(1-K)とおき、
AD⊥BCからKの値を求めるやりかたで
AD=(1-K)√3+K√2 OR AD=(1-K)b+kc
BC=CA+AB⇒-√2+√3 OR -c+b

AD・BC, {(1-K)b+kc}(-c+b) ( ⊥なので)
{(1-k)b・-c+(1-k)b・b+kc・-c+kc...続きを読む

Aベストアンサー

あなたに回答してもポイント発行するだけで、わかったとか、わからんとか、何も反応がなくておもしろくないです。だから、もう回答するのやめてしまいました。他の人はどう思っているか知りませんが。


人気Q&Aランキング

おすすめ情報