ラプラス方程式をノイマン境界条件に
したがってときたいのですが
下の図のような四角形を考えると
四つ角の境界条件の適用の仕方がわかりません。
本によると、

「1つの点にいくつもの条件を重ねて与えてはいけない
 (条件が多すぎて解が存在しなくなってしまう)」

とあります。x,y両方向の境界条件を適用してはいけないのですよね?
どのようにすればいいのですか?教えてください。



●―○―○―○―●
|  |  |  |  |
○―○―○―○―○
|  |  |  |  |
○―○―○―○―○
|  |  |  |  |
○―○―○―○―○
|  |  |  |  |
●―○―○―○―●

図1 差分例

このQ&Aに関連する最新のQ&A

A 回答 (1件)

同じ点なのに、x軸からみたときとy軸からからみたときとで境界条件が違っていたら、


境界条件の方が矛盾していることにならないでしょうか?
    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q|a(n+1)|≦r|an|⇒|an|≦r^(n-1)|a1|

|a(n+1)|≦r|an|⇒|an|≦r^(n-1)|a1|

これはどういう変形を行っているのでしょうか?
nで割っている?教えてください。

Aベストアンサー

任意の n ≧ 1 で |a(n+1)| ≦ r |an| ( r>0 )が成り立つと言っているわけですから、
n≧2で |a(n)| ≦ r |a(n-1)|
さらに、n>2 のとき |a(n-1)| ≦ r |a(n-2)| も成り立つのだから、
|a(n)| ≦ r |a(n-1)| ≦ r (r |a(n-2)|) = r^2 |a(n-2)|

これを次々と繰り返せば
|a(n)| ≦ r |a(n-1) ≦ r^2 |a(n-2)| ≦・・・ ≦ r^i |a(n-i)| ≦ r^(i+1) |a(n-i-1)| ≦ ・・・
≦ r^(n-2) |a(2)| ≦ r^(n-1) |a(1)|

∴ n≧2 において、|a(n)| ≦ r^(n-1) |a(1)|

Q不等式 |a-b|<(1/2)|b| ならば |a|>(1/2)|b| (a,b:複素数) の証明

解析の本で
ある複素数列がある複素数に収束するとき
その逆数の数列が収束値の逆数に収束する証明で使われています。
なんか自明のように使われていました。

虫のいいお願いですが、
複素平面を利用した幾何的な証明と
代数的な(式による)証明と
いただけるとうれしいです。

Aベストアンサー

幾何的証明は図を描けば明らかなので、代数的証明を。


|a-b|≧|b|-|a|が成立すれば、
|a|≧|b|-|a-b|>|b|-(1/2)|b|=(1/2)|b|
となるので、|a-b|≧|b|-|a|を証明することにします。


a=a1+ia2、b=b1+ib2、とおくと、
(|a-b|)^2-(|b|-|a|)^2
=(a1-b1)^2+(a2-b2)^2-(a1^2+a2^2+b1^2+b2^2-2|a||b|)
=2(|a||b|-a1b1-a2b2)

ここで、
(|a||b|)^2-(a1b1+a2b2)^2
=(a1^2+a2^2)(b1^2+b2^2)-(a1^2*b1^2+a2^2*b2^2+2a1a2b1b2)
=a1^2*b2^2+a2^2*b1^2-2a1a2b1b2
=(a1b2-a2b1)^2≧0
なので、
(|a-b|)^2-(|b|-|a|)^2≧0

∴|a-b|≧|b|-|a|



なお、|a||b|-(a1b1+a2b2)≧0 は、
内積 a・b=a1b1+a2a2=|a||b|cosθ≦|a||b|
からでも証明可能です。

幾何的証明は図を描けば明らかなので、代数的証明を。


|a-b|≧|b|-|a|が成立すれば、
|a|≧|b|-|a-b|>|b|-(1/2)|b|=(1/2)|b|
となるので、|a-b|≧|b|-|a|を証明することにします。


a=a1+ia2、b=b1+ib2、とおくと、
(|a-b|)^2-(|b|-|a|)^2
=(a1-b1)^2+(a2-b2)^2-(a1^2+a2^2+b1^2+b2^2-2|a||b|)
=2(|a||b|-a1b1-a2b2)

ここで、
(|a||b|)^2-(a1b1+a2b2)^2
=(a1^2+a2^2)(b1^2+b2^2)-(a1^2*b1^2+a2^2*b2^2+2a1a2b1b2)
=a1^2*b2^2+a2^2*b1^2-2a1a2b1b2
=(a1b2-a2b1)^2≧0
なので、
(|a-b|)^2-(|b|-...続きを読む

Q|a|-|b|≦|a-b|の証明の仕方

|a|-|b|≦|a-b|の証明で、解答には

i)|a|-|b|<0,ii)|a|-|b|≧0に分けていましたが、どうしてそういうわけ方になるのでしょうか。
|a|-|b|≦|a-b|の証明もかねて、御回答くださればと思います

Aベストアンサー

|a-b| は絶対値なので必ず0以上です。
つまり |a|-|b|<0 であれば、必ず |a|-|b|<0≦|a-b| が成り立ちます。
逆に |a|-|b|≧0 のときはどちらが大きいか分かりません。
そういう意味で場合分けがされているのだと思います。

以下 |a|-|b|≧0 のときを考えます。
証明自体は両辺を2乗することが多いかと。
右辺の2乗
=|a-b|^2 (^は~乗の意味です)
=(a-b)^2 (絶対値の2乗は元の数の2乗と同じなので)
=a^2 - 2ab + b^2
左辺の2乗
=(|a|-|b|)*(|a|-|b|)
=|a|^2 - 2|a||b| + |b|^2 (ただ展開しただけ)
=a^2 - 2|a||b| + b^2

右辺の2乗から左辺の2乗を引くと、
(a^2 - 2ab + b^2) - (a^2 - 2|a||b| + b^2)
=2|a||b| - 2ab …☆
aとbの一方が0以上で他方が0未満なら、
2abが0以下になるので、☆は0以上です。
aとbが共に0以上か、共に0未満なら、
2abは0以上ですが、2|a||b|が2abと等しくなり、☆は0です。
どちらにしろ☆は0以上ということになります。

(|a-b|^2) - (|a|-|b|)^2 ≧ 0 より
(|a-b|^2) ≧ (|a|-|b|)^2
ところで |a|-|b|≧0 とし、元々 |a-b|≧0なので、
結局 |a-b| ≧ |a|-|b| となる、ということです。

実際の証明の場合は最後にhata3955jさんのおっしゃっていることを適用すればいいので、私のやり方であれば最後の"ところで~"の部分で場合分けすればよいです。

|a-b| は絶対値なので必ず0以上です。
つまり |a|-|b|<0 であれば、必ず |a|-|b|<0≦|a-b| が成り立ちます。
逆に |a|-|b|≧0 のときはどちらが大きいか分かりません。
そういう意味で場合分けがされているのだと思います。

以下 |a|-|b|≧0 のときを考えます。
証明自体は両辺を2乗することが多いかと。
右辺の2乗
=|a-b|^2 (^は~乗の意味です)
=(a-b)^2 (絶対値の2乗は元の数の2乗と同じなので)
=a^2 - 2ab + b^2
左辺の2乗
=(|a|-|b|)*(|a|-|b|)
=|a|^2 - 2|a||b| + |b|^2 (ただ展...続きを読む

Q数学の証明問題の解答の途中に |a+1|+|a-1|≧0 という式があるんですが、 |a+1|+|a

数学の証明問題の解答の途中に
|a+1|+|a-1|≧0
という式があるんですが、
|a+1|+|a-1|=0
になるaの値ってなんですか?

Aベストアンサー

それをみたすaはありませんが、数学的には5≧3も正しいんですよ。
x≧yの意味はx>yまたはx=yなので、5>3は正しいので5≧3も正しいんです!


人気Q&Aランキング

おすすめ情報