大学院入試の過去問です。

『zを複素数とする時、数列x_n(n=0,1,2,..., x_nは実数)に対する変換X(z)を以下のように定義する。
    X(z) = Σ_n=0~∞ x_n z^(-n)
この時以下の問いに答えよ。
(1) |z|>Rの領域において、X(z)は収束するとする。この領域内の原点を含む閉曲線をCとする時、逆変換は
    x_n = (1/2πi) ∫○C X(z) z^(n-1) dz    (∫○CはCを経路とする周回積分記号のつもり。)
となる事を証明せよ。
(2)x_n+2 = x_n+1 + x_n (n=0,1,2,..., x_0=x_1=1)の時、X(z)を求めよ。
(3)前問で求めたX(z)を逆変換する事によって、x_nを求めよ。』

という問題です。(1)は何となくは分かるのですが正しく理解していないので教えてください。
(2)以降ってフィボナッチ数列ですよね?一般項なんてありましたっけ?

よろしくお願いします。

A 回答 (2件)

[1]   X(z) = Σ_n=0~∞ x_n z^(-n)


の両辺に z^m を掛けて周回積分する.
[2]   ∫○ X(z) z^m dz= Σ_n=0~∞ x_n ∫○ z^(m-n) dz
右辺で,z=0 が1位の極になっているのは m-n=-1 のときで,
このときだけ留数定理から積分の値がゼロでない.
したがって,[2]の右辺は 2πi x_{m+1} で
[3]   ∫○ X(z) z^m dz = 2πi x_{m+1}
m+1 を n と書き直して
[4]    x_n = (1/2πi)∫○ X(z) z^(n-1) dz

フィボナッチ数列の一般項については
http://oshiete1.goo.ne.jp/kotaeru.php3?q=99350
http://oshiete1.goo.ne.jp/kotaeru.php3?q=86219
の私の回答をご覧下さい.
    • good
    • 0
この回答へのお礼

返事が遅くなりまして申し訳ありません。
急の仕事が入ってしまいなかなか時間が割けない状況になってしまいましたもので。

(1)に関してはOKです。ありがとうございました。
引き続き(2)(3)もお願いします。

お礼日時:2001/08/01 18:40

(2)については


zX(z) = Σx_n z^(-n+1)
z^2X(z) = Σx_n z^(-n+2)
という具合にずらしたとき、係数の間の関係式から再び
X(z)で表すことができるという性質を使うのではないでしょうか?
n→∞のほうは関係なくなるように
変な数列の場合も解析接続してかんがえるのでしょうか??
    • good
    • 0
この回答へのお礼

    ∫○ X(z) z^(n-1) dz = 2πi x_{n}
    ∫○ X(z) z^n dz = 2πi x_{n+1}
    ∫○ X(z) z^(n+1) dz = 2πi x_{n+2}
から
    ∫○ X(z) {z^(n+1) - z^n - z^(n-1)}dz = 0
までは分かったのですが、ここからどうして良いか分かりません。
お助けを。。。

お礼日時:2001/08/01 18:41

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q数列{1,cos(nx)}^∞_n=1 についてのfのフーリエ級数はa_0/2+Σ[n=1..∞]a_ncos(nx) (但し,a_0=2/π∫[0..π]f(

宜しくお願い致します。

[問] (1) 数列{1,cos(nx)}^∞_n=1 は[0,π]で直交である事を示せ。
(2) f∈R[0,π](R[0,π]は[0,π]でリーマン積分可能な関数全体の集合)に対して,数列{1,cos(nx)}^∞_n=1 についてのfのフーリエ級数は
a_0/2+Σ[n=1..∞]a_ncos(nx) (但し,a_0=2/π∫[0..π]f(x)dx,a_n=2/π∫[0..π]f(x)cos(nx)dx (n=1,2,…))で与えられる事を示せ。
[(1)の解]
<1,cos(nx)>=∫[0..π]cos(nx)dx=0
次にm≠nの時,<cos(mx),cos(nx)>=∫[0..π]cos(mx)cos(nx)dx
∫[0..π]1/2{cos(mx+nx)-cos(mx-nx)}dx=0
となるので数列{1,cos(nx)}^∞_n=1 は[0,π]で直交
[(2)の解]
この関数の周期はL=π/2なので1/L∫[0..π]cos(kxπ/L)dxに代入して,
a_0=2/π∫[0..π]f(x)dx
は上手くいったのですが
a_n=2/π∫[0..π]cos(2nx)dxとなり,ここから
2/π∫[0..π]f(x)cos(nx)dxに変形できません。
どのようにして変形するのでしょうか?

宜しくお願い致します。

[問] (1) 数列{1,cos(nx)}^∞_n=1 は[0,π]で直交である事を示せ。
(2) f∈R[0,π](R[0,π]は[0,π]でリーマン積分可能な関数全体の集合)に対して,数列{1,cos(nx)}^∞_n=1 についてのfのフーリエ級数は
a_0/2+Σ[n=1..∞]a_ncos(nx) (但し,a_0=2/π∫[0..π]f(x)dx,a_n=2/π∫[0..π]f(x)cos(nx)dx (n=1,2,…))で与えられる事を示せ。
[(1)の解]
<1,cos(nx)>=∫[0..π]cos(nx)dx=0
次にm≠nの時,<cos(mx),cos(nx)>=∫[0..π]cos(mx)cos(nx)dx
∫[0..π]1/2{cos(mx+nx)-cos(mx-nx)}dx=0
となるので数列{1...続きを読む

Aベストアンサー

>この関数の周期は2L(=π)なので1/L∫[0..π]cos(kxπ/L)dxに代入したのです。
ですから、この1/L∫[0..π]cos(kxπ/L)dxがどこから出てきたのかわかりませんものね。
当たり前の公式のように書かれていますが、等式にもなっていないから何を求めているのかもわからないですし。

なので#1の回答では最終的にa_n=2/π∫[0..π]f(x)cos(nx)dxになるような式を予想して解説しました。

>これはfは周期2πの偶関数という意味ですよね。
>今,fは周期はπだと思うのですが…
>あと,どうしてfは偶関数だと分かるのでしょうか?
質問の文に
『数列{1,cos(nx)}^∞_n=1 についてのfのフーリエ級数は
a_0/2+Σ[n=1..∞]a_ncos(nx) (但し,a_0=2/π∫[0..π]f(x)dx,a_n=2/π∫[0..π]f(x)cos(nx)dx (n=1,2,…))で与えられる事を示せ。』
とあったのでf(x)=a_0/2+Σ[n=1..∞]a_ncos(nx)と表せる前提で話をして良いのかなと思ったのです。
また、f∈R[0,π]の関数を周期[-π,π]で展開することも可能なので一概に周期[0,π]とも言えないと思うのです。
(ただし、その場合にも偶関数として展開、奇関数として展開などの適当な前提は要りますが)


どうやら私が質問や問題の内容を推測して回答してしまったのがよくなかったようですね。
今回は補足要求と言うことにしておきます。

・今回の問題(2)の題意は
  fがa_0/2+Σ[n=1..∞]a_ncos(nx)で書けることを示すことですか?
それとも
  f(x)=a_0/2+Σ[n=1..∞]a_ncos(nx)とするとa_0=2/π∫[0..π]f(x)dx,a_n=2/π∫[0..π]f(x)cos(nx)dxとなることを示すことですか?

・『数列{1,cos(nx)}^∞_n=1 についてのfのフーリエ級数』とはこの場合どういう意味でしょう?把握してらっしゃいますか?

・fを展開する際の周期ですが本当に[0,π]ですか?
[0,π]ではcos(nx)とsin(mx)が直交しないですし、
f(x)=Σ{b_n*sin(nx)}と奇関数として展開するしか出来ない気がするんですが。

>この関数の周期は2L(=π)なので1/L∫[0..π]cos(kxπ/L)dxに代入したのです。
ですから、この1/L∫[0..π]cos(kxπ/L)dxがどこから出てきたのかわかりませんものね。
当たり前の公式のように書かれていますが、等式にもなっていないから何を求めているのかもわからないですし。

なので#1の回答では最終的にa_n=2/π∫[0..π]f(x)cos(nx)dxになるような式を予想して解説しました。

>これはfは周期2πの偶関数という意味ですよね。
>今,fは周期はπだと思うのですが…
>あと,どうしてfは偶関数だと分かるのでし...続きを読む

Q(x^2)'=2x, (x^1)'=1, (1)'=0, (x^-1)'=-x^-2 そして ∫x^-1 dx = ln|x| + C

(x^2)' = 2x^1 ⇔ ∫2x dx = x^2 + C
(x^1)' = 1 ⇔ ∫1 dx = x + C
※ ln(x)' = x^-1 ⇔ ∫x^-1 dx = ln|x| + C
(x^-1)' = -x^-2 ⇔ ∫-x^-2 dx = x^-1 + C
(x^-2)' = -2x^-3 ⇔ ∫-2x^-3 dx = x^-2 + C
ですが、

なぜ、※のところだけイレギュラーにになるのでしょう?

はるか昔、高校のときに導出方法は習いましたが、
イメージとしては、どう捉えればよいでしょう?

証明等は無くても構いませんので、
直感に訴える説明、あるいは、逆に高度な数学での説明などができる方いらっしゃいましたら、お願いします。

(もしかしたら、高度な数学では、イレギュラーに見えなくなったりしますか?)

Aベストアンサー

sanoriさん、こんにちは。

釈迦に説法みたいな話しかできませんが…。

(x^α)' = α x^{α-1} …(1)

は、α=0 でも、(x^0)' = 0・x^{-1} = 0 (x≠0)ということで成り立ち、実はイレギュラーというわけでもなかったりします。

(x^2)' = 2x^1
(x^1)' = 1x^0 = 1
(x^0)' = 0x^{-1} = 0
(x^{-1})' = (-1)x^{-2} = -x^{-2}
(x^{-2})' = (-2)x^{-3} = -2x^{-3}

ということなので。。。

つまり、(ln(x))') = 1/x = x^{-1} はこのリストとは別の話と解釈するわけです。

積分のほうも、
∫x^-1 dx = ln|x| + C …(2)
のかわりに、
∫0dx = ∫0x^{-1}dx = 0 + C' = x^0 + C
があると思えば、イレギュラーではなくなります。
(2)は、
∫nx^{n-1}dx=x^n+C …(3)
のリストに元々登場していないと解釈するわけです。

また、(3)の両辺をnで割って、
∫x^{n-1}dx = (1/n)x^n + C …(4)
のリストとして考えると、右辺のほうに1/nがあるので、そのリストからは最初からn=0は除外して考えなければなりません。

たまたま、∫x^{-1}dx = ln|x| + C となるので、はまりそうに見えますが、もともと除外していたところに、後から違う種類のものを持ってきてはめ込んだだけと解釈すれば、そこがイレギュラーになるのは不思議ともいえなくなってきます。

また、(4)のリストの立場で考えると、(分母にnがあるので)n=0を除外しなければならないけど、一方、積分∫x^{-1}dxというものは厳然として存在しているので、その隙間に、べき関数とは全く違う関数 ln|x|+C が入ってきているという言い方もできます。これは、べき関数だけでは一覧表が完成しないところに、logでもって完成させているということにもなります。つまりlogという関数は、べき関数のリストの「隙間」に入ってきて、「完成させる」というイメージです。

sanoriさん、こんにちは。

釈迦に説法みたいな話しかできませんが…。

(x^α)' = α x^{α-1} …(1)

は、α=0 でも、(x^0)' = 0・x^{-1} = 0 (x≠0)ということで成り立ち、実はイレギュラーというわけでもなかったりします。

(x^2)' = 2x^1
(x^1)' = 1x^0 = 1
(x^0)' = 0x^{-1} = 0
(x^{-1})' = (-1)x^{-2} = -x^{-2}
(x^{-2})' = (-2)x^{-3} = -2x^{-3}

ということなので。。。

つまり、(ln(x))') = 1/x = x^{-1} はこのリストとは別の話と解釈するわけです。

積分のほうも、
∫x^-1 dx = l...続きを読む

Q{s_n}をf∈L^+(a,b)の定義関数列とする時,lim[n→∞]∫[a..b](f(x)-s_n(x))dx=0を示せ

L^+(a,b) を区間(a,b)上の非負可積分関数全体の集合とする。

f∈L^+(a,b)に対し,定義関数列{s_n}が存在する。その時,
lim[n→∞]∫[a..b](f(x)-s_n(x))dx=0を示せ。
(この∫は単関数のルベーグ積分)

という問題なのですがどのように証明していいのか分かりません。
定義関数列の定義からs_1(x)≦s_2(x)≦…≦f(x)
でs_n(x)はf(x)に近づいていくので0となる事は直観では分かるのですが…。

どのようにすればいいのでしょう?

Aベストアンサー

つまり
s_n(x)の存在を示して
f(x)=lim[n→∞]∫[a..b](s_n(x))dx
が成立するのを言えばいいのではないでしょうか。

P27,28に書いてあります。

参考URL:http://www.sci.hyogo-u.ac.jp/maths/master/h19/2007kuwabara.pdf

Q(i)spanX=V ならば x∈V,x=Σ[i=1..n](xi),(ii)x∈V,∥x∥^2=Σ[i=1..n]||^2ならばXは完

お世話になっています。

[Q]X={x1,x2,…,xn}を内積空間Vの正規直交集合とせよ。この時,次の(i),(ii)を示せ。
(i)spanX=V ならば x∈V,x=Σ[i=1..n](<x,xi>xi)
(ii)x∈V,∥x∥^2=Σ[i=1..n]|<x,xi>|^2ならばXは完全

完全の定義は「正規直交集合Xが完全とはVの中での最大個数の正規直交集合の時,Xを
完全と言う」です。
つまり,#X=max{#S∈N;(V⊃)Sが正規直交集合}を意味します。

証明で行き詰まっています。

(i)については
x∈Vを採ると,spanX=Vよりx=Σ[i=1..n]cixi (c∈F (i=1,2,…,n))と表せる。
これからΣ[i=1..n](<x,xi>xi)にどうやって持ってけばいいのでしょうか?

あと,(ii)についてはさっぱりわかりません。
何か助け舟をお願い致します。

Aベストアンサー

>x=Σ[i=1..n]cixi (c∈F (i=1,2,…,n))と表せる。
<xi,x>を計算すれば終わり

>(ii)についてはさっぱりわかりません
「任意の」x∈Vに対して
∥x∥^2=Σ[i=1..n]|<x,xi>|^2
ならばXは完全

x1,...,xnとは異なるyをとり,
x1,...,xn,yが正規直交であると仮定する.
||y||^2 = Σ[i=1..n]|<y,xi>|^2を計算すれば
矛盾がでてくる.


人気Q&Aランキング

おすすめ情報