大学院入試の過去問です。

『zを複素数とする時、数列x_n(n=0,1,2,..., x_nは実数)に対する変換X(z)を以下のように定義する。
    X(z) = Σ_n=0~∞ x_n z^(-n)
この時以下の問いに答えよ。
(1) |z|>Rの領域において、X(z)は収束するとする。この領域内の原点を含む閉曲線をCとする時、逆変換は
    x_n = (1/2πi) ∫○C X(z) z^(n-1) dz    (∫○CはCを経路とする周回積分記号のつもり。)
となる事を証明せよ。
(2)x_n+2 = x_n+1 + x_n (n=0,1,2,..., x_0=x_1=1)の時、X(z)を求めよ。
(3)前問で求めたX(z)を逆変換する事によって、x_nを求めよ。』

という問題です。(1)は何となくは分かるのですが正しく理解していないので教えてください。
(2)以降ってフィボナッチ数列ですよね?一般項なんてありましたっけ?

よろしくお願いします。

A 回答 (2件)

[1]   X(z) = Σ_n=0~∞ x_n z^(-n)


の両辺に z^m を掛けて周回積分する.
[2]   ∫○ X(z) z^m dz= Σ_n=0~∞ x_n ∫○ z^(m-n) dz
右辺で,z=0 が1位の極になっているのは m-n=-1 のときで,
このときだけ留数定理から積分の値がゼロでない.
したがって,[2]の右辺は 2πi x_{m+1} で
[3]   ∫○ X(z) z^m dz = 2πi x_{m+1}
m+1 を n と書き直して
[4]    x_n = (1/2πi)∫○ X(z) z^(n-1) dz

フィボナッチ数列の一般項については
http://oshiete1.goo.ne.jp/kotaeru.php3?q=99350
http://oshiete1.goo.ne.jp/kotaeru.php3?q=86219
の私の回答をご覧下さい.
    • good
    • 0
この回答へのお礼

返事が遅くなりまして申し訳ありません。
急の仕事が入ってしまいなかなか時間が割けない状況になってしまいましたもので。

(1)に関してはOKです。ありがとうございました。
引き続き(2)(3)もお願いします。

お礼日時:2001/08/01 18:40

(2)については


zX(z) = Σx_n z^(-n+1)
z^2X(z) = Σx_n z^(-n+2)
という具合にずらしたとき、係数の間の関係式から再び
X(z)で表すことができるという性質を使うのではないでしょうか?
n→∞のほうは関係なくなるように
変な数列の場合も解析接続してかんがえるのでしょうか??
    • good
    • 0
この回答へのお礼

    ∫○ X(z) z^(n-1) dz = 2πi x_{n}
    ∫○ X(z) z^n dz = 2πi x_{n+1}
    ∫○ X(z) z^(n+1) dz = 2πi x_{n+2}
から
    ∫○ X(z) {z^(n+1) - z^n - z^(n-1)}dz = 0
までは分かったのですが、ここからどうして良いか分かりません。
お助けを。。。

お礼日時:2001/08/01 18:41

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qエクセルで複素数の表し方

例えばisinθはエクセルでどうやって表せばよいのでしょうか?またその方法はexp(iδ)にも適用できますか?

Aベストアンサー

IMSIN関数が使えます。ただし「ツール」→「アドイン」で分析ツールを組み込む必要があります。以下はEXCELヘルプの内容です。

IMSIN(複素数)
複素数 サインを求める複素数を指定します。
COMPLEX 関数を使用すると、実数係数と虚数係数を指定して、複素数に変換することができます。

後半部分の意味はよく理解できませんが、IMLN(複素数の自然対数を返す)、IMLOG10(複素数の 10 を底とする常用対数を返す)関数も利用可能です。

Q数列{1,cos(nx)}^∞_n=1 についてのfのフーリエ級数はa_0/2+Σ[n=1..∞]a_ncos(nx) (但し,a_0=2/π∫[0..π]f(

宜しくお願い致します。

[問] (1) 数列{1,cos(nx)}^∞_n=1 は[0,π]で直交である事を示せ。
(2) f∈R[0,π](R[0,π]は[0,π]でリーマン積分可能な関数全体の集合)に対して,数列{1,cos(nx)}^∞_n=1 についてのfのフーリエ級数は
a_0/2+Σ[n=1..∞]a_ncos(nx) (但し,a_0=2/π∫[0..π]f(x)dx,a_n=2/π∫[0..π]f(x)cos(nx)dx (n=1,2,…))で与えられる事を示せ。
[(1)の解]
<1,cos(nx)>=∫[0..π]cos(nx)dx=0
次にm≠nの時,<cos(mx),cos(nx)>=∫[0..π]cos(mx)cos(nx)dx
∫[0..π]1/2{cos(mx+nx)-cos(mx-nx)}dx=0
となるので数列{1,cos(nx)}^∞_n=1 は[0,π]で直交
[(2)の解]
この関数の周期はL=π/2なので1/L∫[0..π]cos(kxπ/L)dxに代入して,
a_0=2/π∫[0..π]f(x)dx
は上手くいったのですが
a_n=2/π∫[0..π]cos(2nx)dxとなり,ここから
2/π∫[0..π]f(x)cos(nx)dxに変形できません。
どのようにして変形するのでしょうか?

宜しくお願い致します。

[問] (1) 数列{1,cos(nx)}^∞_n=1 は[0,π]で直交である事を示せ。
(2) f∈R[0,π](R[0,π]は[0,π]でリーマン積分可能な関数全体の集合)に対して,数列{1,cos(nx)}^∞_n=1 についてのfのフーリエ級数は
a_0/2+Σ[n=1..∞]a_ncos(nx) (但し,a_0=2/π∫[0..π]f(x)dx,a_n=2/π∫[0..π]f(x)cos(nx)dx (n=1,2,…))で与えられる事を示せ。
[(1)の解]
<1,cos(nx)>=∫[0..π]cos(nx)dx=0
次にm≠nの時,<cos(mx),cos(nx)>=∫[0..π]cos(mx)cos(nx)dx
∫[0..π]1/2{cos(mx+nx)-cos(mx-nx)}dx=0
となるので数列{1...続きを読む

Aベストアンサー

>この関数の周期は2L(=π)なので1/L∫[0..π]cos(kxπ/L)dxに代入したのです。
ですから、この1/L∫[0..π]cos(kxπ/L)dxがどこから出てきたのかわかりませんものね。
当たり前の公式のように書かれていますが、等式にもなっていないから何を求めているのかもわからないですし。

なので#1の回答では最終的にa_n=2/π∫[0..π]f(x)cos(nx)dxになるような式を予想して解説しました。

>これはfは周期2πの偶関数という意味ですよね。
>今,fは周期はπだと思うのですが…
>あと,どうしてfは偶関数だと分かるのでしょうか?
質問の文に
『数列{1,cos(nx)}^∞_n=1 についてのfのフーリエ級数は
a_0/2+Σ[n=1..∞]a_ncos(nx) (但し,a_0=2/π∫[0..π]f(x)dx,a_n=2/π∫[0..π]f(x)cos(nx)dx (n=1,2,…))で与えられる事を示せ。』
とあったのでf(x)=a_0/2+Σ[n=1..∞]a_ncos(nx)と表せる前提で話をして良いのかなと思ったのです。
また、f∈R[0,π]の関数を周期[-π,π]で展開することも可能なので一概に周期[0,π]とも言えないと思うのです。
(ただし、その場合にも偶関数として展開、奇関数として展開などの適当な前提は要りますが)


どうやら私が質問や問題の内容を推測して回答してしまったのがよくなかったようですね。
今回は補足要求と言うことにしておきます。

・今回の問題(2)の題意は
  fがa_0/2+Σ[n=1..∞]a_ncos(nx)で書けることを示すことですか?
それとも
  f(x)=a_0/2+Σ[n=1..∞]a_ncos(nx)とするとa_0=2/π∫[0..π]f(x)dx,a_n=2/π∫[0..π]f(x)cos(nx)dxとなることを示すことですか?

・『数列{1,cos(nx)}^∞_n=1 についてのfのフーリエ級数』とはこの場合どういう意味でしょう?把握してらっしゃいますか?

・fを展開する際の周期ですが本当に[0,π]ですか?
[0,π]ではcos(nx)とsin(mx)が直交しないですし、
f(x)=Σ{b_n*sin(nx)}と奇関数として展開するしか出来ない気がするんですが。

>この関数の周期は2L(=π)なので1/L∫[0..π]cos(kxπ/L)dxに代入したのです。
ですから、この1/L∫[0..π]cos(kxπ/L)dxがどこから出てきたのかわかりませんものね。
当たり前の公式のように書かれていますが、等式にもなっていないから何を求めているのかもわからないですし。

なので#1の回答では最終的にa_n=2/π∫[0..π]f(x)cos(nx)dxになるような式を予想して解説しました。

>これはfは周期2πの偶関数という意味ですよね。
>今,fは周期はπだと思うのですが…
>あと,どうしてfは偶関数だと分かるのでし...続きを読む

Q複素数

複素数について質問させて頂きます。

参考書には、
「複素数zが実数でない場合つまり、虚部が0でないときzは虚数である」という。

というように記載されていました。
私は複素数は常に虚数だと認識していましたがそうでない場合もあるのでしょうか?
複素数zが実数でない場合と記載されていたので複素数が実数の場合もあるのでは
ないかと考えた次第です。

つまり、
z=x+iy
(z:複素数、x,y:実数、i:虚数単位)
において、y=0の場合でもzを複素数と呼ぶのですか?
上記の場合、zは虚数ではないですが複素数とは言えるのでしょうか?

複素数の定義は、
実数x,yと虚数単位iを用いてz=x+iyの形で表すことのできる数です。
(定義にy≠0は特に記載されていませんでした。)

なので、z=x+iyにおいてy=0の場合は複素数とは言わないと考えています。

質問内容を整理しますと、
(1)複素数は常に虚数である
(2)z=x+iyにおいて、y=0のときzは複素数ではない
  複素数の定義にy≠0は必要なのでしょうか?


以上、ご回答よろしくお願い致します。

複素数について質問させて頂きます。

参考書には、
「複素数zが実数でない場合つまり、虚部が0でないときzは虚数である」という。

というように記載されていました。
私は複素数は常に虚数だと認識していましたがそうでない場合もあるのでしょうか?
複素数zが実数でない場合と記載されていたので複素数が実数の場合もあるのでは
ないかと考えた次第です。

つまり、
z=x+iy
(z:複素数、x,y:実数、i:虚数単位)
において、y=0の場合でもzを複素数と呼ぶのですか?
上記の場合、zは虚数ではないですが複素数...続きを読む

Aベストアンサー

>複素数の定義は、
>実数x,yと虚数単位iを用いてz=x+iyの形で表すことのできる数です。
>(定義にy≠0は特に記載されていませんでした。)
>
>なので、z=x+iyにおいてy=0の場合は複素数とは言わないと考えています。

どうしてそういう意味不明なことを?

z=x+iyであって,yについては何も条件がない(yが実数ということ以外)なら
yは実数であればなんでもいいということです
勝手に「yは0ではない」なんてつけてはいけません.

実数は複素数の一部です.
高校でそう習ったでしょう?
教科書にもそう書いてあるでしょう?

「zは複素数」という言及は「zが実数」というのを含みます.
「複素数zが実数ではない」というのが虚部が0ではないという意味です.

ちなみに
>複素数zが実数でない場合つまり、虚部が0でないときzは虚数である

こんな言い方はかなりマイナーです.
教科書や問題集で「虚数単位」という以外に
わざわざ「虚数」っていうことはほとんどないはずです.

Q(x^2)'=2x, (x^1)'=1, (1)'=0, (x^-1)'=-x^-2 そして ∫x^-1 dx = ln|x| + C

(x^2)' = 2x^1 ⇔ ∫2x dx = x^2 + C
(x^1)' = 1 ⇔ ∫1 dx = x + C
※ ln(x)' = x^-1 ⇔ ∫x^-1 dx = ln|x| + C
(x^-1)' = -x^-2 ⇔ ∫-x^-2 dx = x^-1 + C
(x^-2)' = -2x^-3 ⇔ ∫-2x^-3 dx = x^-2 + C
ですが、

なぜ、※のところだけイレギュラーにになるのでしょう?

はるか昔、高校のときに導出方法は習いましたが、
イメージとしては、どう捉えればよいでしょう?

証明等は無くても構いませんので、
直感に訴える説明、あるいは、逆に高度な数学での説明などができる方いらっしゃいましたら、お願いします。

(もしかしたら、高度な数学では、イレギュラーに見えなくなったりしますか?)

Aベストアンサー

sanoriさん、こんにちは。

釈迦に説法みたいな話しかできませんが…。

(x^α)' = α x^{α-1} …(1)

は、α=0 でも、(x^0)' = 0・x^{-1} = 0 (x≠0)ということで成り立ち、実はイレギュラーというわけでもなかったりします。

(x^2)' = 2x^1
(x^1)' = 1x^0 = 1
(x^0)' = 0x^{-1} = 0
(x^{-1})' = (-1)x^{-2} = -x^{-2}
(x^{-2})' = (-2)x^{-3} = -2x^{-3}

ということなので。。。

つまり、(ln(x))') = 1/x = x^{-1} はこのリストとは別の話と解釈するわけです。

積分のほうも、
∫x^-1 dx = ln|x| + C …(2)
のかわりに、
∫0dx = ∫0x^{-1}dx = 0 + C' = x^0 + C
があると思えば、イレギュラーではなくなります。
(2)は、
∫nx^{n-1}dx=x^n+C …(3)
のリストに元々登場していないと解釈するわけです。

また、(3)の両辺をnで割って、
∫x^{n-1}dx = (1/n)x^n + C …(4)
のリストとして考えると、右辺のほうに1/nがあるので、そのリストからは最初からn=0は除外して考えなければなりません。

たまたま、∫x^{-1}dx = ln|x| + C となるので、はまりそうに見えますが、もともと除外していたところに、後から違う種類のものを持ってきてはめ込んだだけと解釈すれば、そこがイレギュラーになるのは不思議ともいえなくなってきます。

また、(4)のリストの立場で考えると、(分母にnがあるので)n=0を除外しなければならないけど、一方、積分∫x^{-1}dxというものは厳然として存在しているので、その隙間に、べき関数とは全く違う関数 ln|x|+C が入ってきているという言い方もできます。これは、べき関数だけでは一覧表が完成しないところに、logでもって完成させているということにもなります。つまりlogという関数は、べき関数のリストの「隙間」に入ってきて、「完成させる」というイメージです。

sanoriさん、こんにちは。

釈迦に説法みたいな話しかできませんが…。

(x^α)' = α x^{α-1} …(1)

は、α=0 でも、(x^0)' = 0・x^{-1} = 0 (x≠0)ということで成り立ち、実はイレギュラーというわけでもなかったりします。

(x^2)' = 2x^1
(x^1)' = 1x^0 = 1
(x^0)' = 0x^{-1} = 0
(x^{-1})' = (-1)x^{-2} = -x^{-2}
(x^{-2})' = (-2)x^{-3} = -2x^{-3}

ということなので。。。

つまり、(ln(x))') = 1/x = x^{-1} はこのリストとは別の話と解釈するわけです。

積分のほうも、
∫x^-1 dx = l...続きを読む

Q複素数 実数 集合 濃度

複素数と実数について質問させて頂きます。

実数は有理数と無理数をあわせた数(複素数から虚部を除いた数)
と認識しています。

添付にイメージ図を記載しました。
このイメージ図が間違っているのでしょうか?

集合としては実数より複素数が大きいと思います。
しかし、複素数と実数の濃度は等しいと教えて頂きました。

濃度とは、有限集合でいうところの数だと認識しています。

集合として複素数が大きいのに、複素数と実数の濃度が等しい
事が不思議でなりません・・・
複素数の集合は実数の集合と虚数の集合を合わせたものなのに
なぜ、複素数と実数の数は等しくなるのでしょうか?


以上、ご回答よろしくお願い致します。

Aベストアンサー

Alice_44先生よりも素人っぽい説明をトライしてみます。

連続体濃度で考える前に加算濃度の無限集合を考えます。

最初に、二元数の無限集合が一元数の無限集合と一対一対応することを確認します。
二元数とは二次元座標系の様に、(X,Y)で表すことが出来る数です。
大きさが無限の碁盤の目を想像してください。
縦方向にXを割り当て、横方向にYを割り当てると、無限に大きな碁盤の目で全ての可算無限の二元数が割り当てられることが分かります。
つぎに、自然数Nをもってきて、碁盤の目を斜めに割り当てます。図を書くのが面倒なので言葉で説明すると、

(1,1)=1
(2,1)=2
(2,2)=3
(3,1)=4
(3.2)=5
(3,3)=6
(4,1)=7
 ・・
 ・・
 ・
と割り当てて行けば、すべての升目に自然数Nを一対一で対応させることができます。
したがって、二元数の可算無限の濃度は、自然数と同じ、つまりアレフ0であることが分かります。

連続体濃度でも同じように対角線で対応を考えると、実数Rと複素数X+Yiが一対一対応をすることが分かります。
(数学的にはここの詰めが甘いとこなのですが、イメージはつかみやすいと思います。)
このことから複素数と実数がおなじ濃度アレフ1を持つことが分かります。

連続体濃度の二元数は平面と考えることができます。したがって、上記のことは、直線の中にある点の数と、平面の中にある点の数が同じであるという、摩訶不思議なことを証明しています。
立体空間に中に取れる全ての点(=3元数)と、線分の中に取れるすべての点も一対一対応することが分かります。
まさに無限であることからの違和感がありますが、点を元とする無限集合は、直線でも、平面でも、立体でも、濃度が同じという事です。

ご参考まで。

Alice_44先生よりも素人っぽい説明をトライしてみます。

連続体濃度で考える前に加算濃度の無限集合を考えます。

最初に、二元数の無限集合が一元数の無限集合と一対一対応することを確認します。
二元数とは二次元座標系の様に、(X,Y)で表すことが出来る数です。
大きさが無限の碁盤の目を想像してください。
縦方向にXを割り当て、横方向にYを割り当てると、無限に大きな碁盤の目で全ての可算無限の二元数が割り当てられることが分かります。
つぎに、自然数Nをもってきて、碁盤の目を斜めに割り当てます。図...続きを読む

Q{s_n}をf∈L^+(a,b)の定義関数列とする時,lim[n→∞]∫[a..b](f(x)-s_n(x))dx=0を示せ

L^+(a,b) を区間(a,b)上の非負可積分関数全体の集合とする。

f∈L^+(a,b)に対し,定義関数列{s_n}が存在する。その時,
lim[n→∞]∫[a..b](f(x)-s_n(x))dx=0を示せ。
(この∫は単関数のルベーグ積分)

という問題なのですがどのように証明していいのか分かりません。
定義関数列の定義からs_1(x)≦s_2(x)≦…≦f(x)
でs_n(x)はf(x)に近づいていくので0となる事は直観では分かるのですが…。

どのようにすればいいのでしょう?

Aベストアンサー

つまり
s_n(x)の存在を示して
f(x)=lim[n→∞]∫[a..b](s_n(x))dx
が成立するのを言えばいいのではないでしょうか。

P27,28に書いてあります。

参考URL:http://www.sci.hyogo-u.ac.jp/maths/master/h19/2007kuwabara.pdf

Q代数学の基本定理と複素数体cより濃度が大きい環?

代数学の基本定理では、複素数を係数に持つ任意の、n次方程式は必ず、n個の複素数の根を持つ、とあります。私は、これは、複素数体cより濃度が大きい体を考えても無駄ということを意味すると思うので、一般に、複素数体cより濃度が大きい環を考えても無駄だと思うのですが、複素数体cより濃度が大きい環はあるのでしょうか?

Aベストアンサー

「複素数から複素数への写像の集合」Fは複素数体Cより濃度が大きいですよね。
Fの元f,gについて、
加法を f+g : z → f(z) + g(z)
乗法を fg : z → f(z)g(z)
と定義しましょう。

この時、零元は 0F : z → 0 、
fのマイナス元は -f : z → -f(z) であり、
交換法則・結合法則は満たします。

また、単位元は 1F : z → 1 、
fの逆元は f ≠ 0Fの時 f^(-1) : z → 1/f(z) であり、
交換法則・結合法則は満たします。

また、分配法則も満たすので、可換体になっていないでしょうか。

Q(i)spanX=V ならば x∈V,x=Σ[i=1..n](xi),(ii)x∈V,∥x∥^2=Σ[i=1..n]||^2ならばXは完

お世話になっています。

[Q]X={x1,x2,…,xn}を内積空間Vの正規直交集合とせよ。この時,次の(i),(ii)を示せ。
(i)spanX=V ならば x∈V,x=Σ[i=1..n](<x,xi>xi)
(ii)x∈V,∥x∥^2=Σ[i=1..n]|<x,xi>|^2ならばXは完全

完全の定義は「正規直交集合Xが完全とはVの中での最大個数の正規直交集合の時,Xを
完全と言う」です。
つまり,#X=max{#S∈N;(V⊃)Sが正規直交集合}を意味します。

証明で行き詰まっています。

(i)については
x∈Vを採ると,spanX=Vよりx=Σ[i=1..n]cixi (c∈F (i=1,2,…,n))と表せる。
これからΣ[i=1..n](<x,xi>xi)にどうやって持ってけばいいのでしょうか?

あと,(ii)についてはさっぱりわかりません。
何か助け舟をお願い致します。

Aベストアンサー

>x=Σ[i=1..n]cixi (c∈F (i=1,2,…,n))と表せる。
<xi,x>を計算すれば終わり

>(ii)についてはさっぱりわかりません
「任意の」x∈Vに対して
∥x∥^2=Σ[i=1..n]|<x,xi>|^2
ならばXは完全

x1,...,xnとは異なるyをとり,
x1,...,xn,yが正規直交であると仮定する.
||y||^2 = Σ[i=1..n]|<y,xi>|^2を計算すれば
矛盾がでてくる.

Q複素数をより高い視点から

私は高校レベルの複素数には飽き足らず、いろいろ複素数について学んでいくうちにもっと専門的なレベルでの複素数について純粋に知りたいと思っています。学参には書いていないような、テイラー展開がどのように複素数と関係するのかなど、高校レベルよりも少し高いくらいのことが知りたいです。そこで大学での専門書の中で、入門書レベルの専門書で何かお勧めの書はごぞんじありませんか?ぜひ教えてください!!

Aベストアンサー

そうですねえ。読みやすさということなら、
志賀浩二「数学が育っていく物語2 解析性 」
はどうでしょう。

専門書とは言えませんが、テイラー展開と複素数の関係(解析性)なんかを、ほんとの専門書で学ぶ前にイメージしたい、っていうには非常によいかと。


人気Q&Aランキング