これからの季節に親子でハイキング! >>

毎度の小学校算数の問題です。

A/B×B×B=1/588を満たす自然数A、Bの最小の値を求めましょう。

よろしくお願いします。

A 回答 (4件)

A/(BxBxB)=A÷B÷B÷B=1/588という事なら


588=2x2x3x7x7
だから1/588=1/(2x2x3x7x7)
これは約分後の状態
約分前は、分母が自然数「B」三つからできているから、約分後に残った数が2と3と7(いずれも3個未満)なら
少なくともBには2が一つ、3が一つ、7が一つ含まれていなければつじつまが合わない
(例:B=2x3のようにBに7が含まれなければ、
 分母=BxBxB=2x2x2x3x3x3で
Aがどんな自然数であっても約分で分母に7が現れることは無い
Bに2や3が含まれない場合も同様)
従ってBの最小の値は、2,3,7、ひとつづつの積で
B=2x3x7=42・・・答え
このとき、分母=BxBxB=2x2x2x3x3x3x7x7x7
約分後、1/588=1/(2x2x3x7x7)となるなら
A=2x3x3x7=126・・・答え

(当然ですが、A,Bが 答えの数値のとき A/(BxBxB)=126/(42x42x42)=1/588)

このように考えることが出来ます
    • good
    • 1
この回答へのお礼

ありがとうこざいます。

お礼日時:2019/04/24 11:28

588=2x2x3x7x7 は 小学校で習いますか。


中学受験を目指す人は、 1桁 2桁の 公倍数や公約数は、学習するでしょうが、
素因数分解は、文科省の指導要綱では 中学校の分野です。
    • good
    • 0
この回答へのお礼

そうなんですか。ありがとうこざいます。塾の問題なので。

お礼日時:2019/04/24 11:28

適っ当に作った問題か!



A/B×B×Bと書くと、(A/B)×B×Bと言う意味になる。
この場合は、A×B=1/588より、これを満たす自然数A、Bは存在しない。

A/(B×B×B)と解釈する場合。

588を素因数分解(素数の掛け算の形に)する。

588=2²×3×7²

分子A=(2²×3×7²)×(2²×3×7²)
分母B=(2²×3×7²)×(2²×3×7²)×(2²×3×7²)
    • good
    • 0
この回答へのお礼

ありがとうこざいます

お礼日時:2019/04/24 11:28

「式を満たすような自然数A,Bの組は存在しない」が正解です。



A/B×B×B=1/588 左辺を整理して、
A×B=1/588
自然数×自然数が分数になることはあり得ないので、式を満たすような自然数A,Bの組は存在しない
    • good
    • 0
この回答へのお礼

なるほど。ひっかけですか。ありがとうこざいます。

お礼日時:2019/04/24 11:29

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aと関連する良く見られている質問

Q7/44×20/39×286/105÷6/x=8/27 の答えがどうしても出ません。 普通に計算して

7/44×20/39×286/105÷6/x=8/27

の答えがどうしても出ません。
普通に計算していくと
7722/10296=6/xとなってしまいます。
xは整数だと思われるのですが。
よろしくお願いします。
小5の塾の問題です。

Aベストアンサー

7722/10296=6/x と地道に計算したのですか?
大変だったでしょう?
ここまであっていますから、後は両辺にx倍して
(7722/10296)x=(6/x)・x=6⇔(7722/10296)x=6
更に両辺10296/7722倍して
x=6・(10296/7722)=8と答えを導き出せます。

ただ、このような掛け算割算だけの式では、以下のように計算していく方が楽だと思います

7/44×20/39×286/105x(s/6)=8/27・・・割算を直し、掛け算だけの式にした(xは掛け算の記号と見分けられるように、sとしておきました)
{(7x20x286)/(44x39x105x6)}s=8/27・・・分母同士、分子同士をまとめて、文字sだけは分離しておく
s=(8/27)x{(44x39x105x6)/(7x20x286)}・・・s=の形にした
s=(44x39x105x6x8)/(7x20x286x27) ・・・分母同士、分子同士をまとめた
このように、掛け算の実行は後回しにして S= の形に式変形できたら次は約分です
画像のように、次々と約分をしていくと、やがて分母は消え分子が8になります。
(下図は赤線の約分をして、105が15に、
次に青線の約分で15が3に、20が4に
更に緑線の約分で3が消え27が9に なったところです。この要領で更に約分を続けます。)

ポイントは (掛け算だけの)分数式では初めに掛け算をしても最後に約分をするので、結局初めの掛け算はしてもしなくても同じ ということがあるという事です。このようなときは、初めに行う掛け算は無駄手間なので、出来るだけ掛け算実行を我慢して先送りするというのが良いのです。

7722/10296=6/x と地道に計算したのですか?
大変だったでしょう?
ここまであっていますから、後は両辺にx倍して
(7722/10296)x=(6/x)・x=6⇔(7722/10296)x=6
更に両辺10296/7722倍して
x=6・(10296/7722)=8と答えを導き出せます。

ただ、このような掛け算割算だけの式では、以下のように計算していく方が楽だと思います

7/44×20/39×286/105x(s/6)=8/27・・・割算を直し、掛け算だけの式にした(xは掛け算の記号と見分けられるように、sとしておきました)
{(7x20x286)/(44x39x105x6)}s=8/27・・・分母同士、...続きを読む

Q答えは、1/4 らしいのですが、何故ですか?

答えは、1/4 らしいのですが、何故ですか?

Aベストアンサー

lim[h→0](ln(4+h)-ln(4))/h
=lim[h→0](1/h) ln((4+h)/4)
=lim[h→0](1/h) ln(1+(h/4))
=lim[h→0] ln(1+(h/4))^(1/h)
=lim[h→0] ln(1+(h/4))^((4/h)(1/4))
=lim[h→0] ln((1+(h/4))^(4/h))^(1/4)

t=h/4とすると、h→0はt→0に置き換えられる。

=lim[t→0] ln((1+t)^(1/t))^(1/4)
=ln(e)^(1/4) ※eは自然対数の底(またはネイピア数)
=(1/4)ln(e)
=1/4

Q数学I 展開の問題です。 x(x-5)^2 "^2は二乗です。" この式の展開のやり方が分かりません

数学I 展開の問題です。
x(x-5)^2 "^2は二乗です。"
この式の展開のやり方が分かりません。
「括弧の前にあるx」と「括弧についている二乗」はどちらを先に計算すれば良いのですか?

Aベストアンサー

どちらでも良いですが、分かりやすく楽なほうであれば2乗を先に計算するほうですね。

Q写真の答えを教えてください… 中学の数学です。

写真の答えを教えてください…
中学の数学です。

Aベストアンサー

1.
4a(a-3b)
2.
x(x-1)
3.
(x+3)(x+8)
4.
(x-2)(x-6)
5.
(x-3)(x+7)

Qこの解き方を教えて欲しいです!! 答えは13個です。

この解き方を教えて欲しいです!!
答えは13個です。

Aベストアンサー

ちょっと留意したいのが
① : 自然数って正の整数(1, 2, 3, 4, 5とかですよね)
② : 線分上は含まない

③ B (10 ,0)
y = - 1 /2 x + 5とx 軸との交点 (x, 0) なので
0 = - 1 /2 x + 5で求まりますよね。

④ △AOB内部なので
質問者さんが求めたA (2, 4) からOBに垂線をひき、それを境に

x が自然数 1, 2における
y の値は 「y = 2x」のAOより下部をさがす。
ので

→x = 1のとき
y = 2x の座標は (1, 2)。
①,②に留意しながら
(1, 2)より下部にあり
座標(1, 1)が求める点の1つ。

→x = 2のとき
A(2, 4)より下部
(2, 3), (2, 2), (2, 1)の 3点。

x が自然数 3, 4, 5, 6, 7, 8, 9, における
y の値は 「y = - 1 /2 x +5」のABより下部をさがす。

→x = 3のとき
y = - 1 /2 x + 5
= (- 1 /2)×3 +5
= - 3 /2 + 10 /2
= 7 /2
= 3.5
座標 (3, 3.5)より下部
(3, 3),(3, 2),(3, 1)の3点。

→x = 4のとき
座標 (4, 3)より下部
(4, 2),(4, 1)の 2点。

→x = 5のとき
座標(5, 2.5)より下部
(5, 2),(5, 1)の2点。

→x= 6のとき
座標(6, 2)より下部
(6, 1)の1点。

→x= 7のとき
座標(7, 1.5)より下部
(7, 1)の1点。

→x= 8のとき
y= -1 /2 x +5の座標(8,1)より下部をさがすと
(8, 1)と(8, 0)との間には
留意①②から問題(1)に合う点なし。
→x= 9 のときも同様になし

補足。
みなさんの回答にはいつもお世話になってます。

ちょっと留意したいのが
① : 自然数って正の整数(1, 2, 3, 4, 5とかですよね)
② : 線分上は含まない

③ B (10 ,0)
y = - 1 /2 x + 5とx 軸との交点 (x, 0) なので
0 = - 1 /2 x + 5で求まりますよね。

④ △AOB内部なので
質問者さんが求めたA (2, 4) からOBに垂線をひき、それを境に

x が自然数 1, 2における
y の値は 「y = 2x」のAOより下部をさがす。
ので

→x = 1のとき
y = 2x の座標は (1, 2)。
①,②に留意しながら
(1, 2)より下部にあり
座標(1, 1)が求める点の1つ。

→x = 2のとき
A(2, 4)より下部
(2,...続きを読む

Q物理基礎の水圧の公式はなぜ丸暗記ではいけないのですか? もちろん他の公式もこの公式も、何故そうなるの

物理基礎の水圧の公式はなぜ丸暗記ではいけないのですか?
もちろん他の公式もこの公式も、何故そうなるのかを考えながらしっかり勉強しています。
しかし、私が今やっている参考書も、物理の先生も、この公式は自分でしっかりと導き出せるようになれと言います。
何故この公式に限ってそんなことが書かれているのですか?

Aベストアンサー

あまり気にする事は無いですよ(^^)
水圧の公式の導出過程に物理を勉強する上でのエッセンス的なものが含まれているわけではありませんから・・・(^^;)
多分、水圧に対する生徒の理解が低いと、参考書の執筆者や先生が感じているから、そういう風に言っているのだと思います。
公式の出てくる理由どころか、公式さえも憶えていない生徒が多いって事ではないでしょうか?

Qどういう計算式ですか(矢印の部分)

どういう計算式ですか(矢印の部分)

Aベストアンサー

通分するのは何かと面倒くさいので、
1/x(x-1) = a/(x-1) + b/x と置いてから
1/x = a + (b/x)(x-1) と変形して x = 1 を代入すると 1 = a、
1/(x-1) = (a/(x-1))x + b と変形して x = 0 を代入すると -1 = b
とかいう小技をよく使う。

Q式の計算の展開についてです。 (x+1)(x+2)(x+3)(x+4) を工夫して展開する方法を教え

式の計算の展開についてです。
(x+1)(x+2)(x+3)(x+4)
を工夫して展開する方法を教えて下さい

Aベストアンサー

算数や数学のコツは、
個人的には、似たようなものを探すことだと思います。

この例では、
1と4を足すと5
2と3を足すと5

なんか似ているような。。。と感じることができると思います。
(これが瞬間的に感じられる必要があると思います。)

(x+a)(x+b)=x^2+(a+b)x+ab という公式があり、
a+bで、足し算があるな、、、、と上の感じたこととつながるのです。

すると、
(x+1)(x+2)(x+3)(x+4)
=(x+1)(x+4) × (x+2)(x+3) というように考えると良いのでは?と思いつくわけです。

=(x^2+5x+4)(x^2+5x+6)
x^2+5x=a とおくと、

=(a+4)(a+6)
=(a^2+10a+24)
となり、
=(x^2+5x)^2+10(x^2+5x)+24
あとは、展開するだけ、、、です。

Qこの問題の有理化のしかたを教えてください。

この問題の有理化のしかたを教えてください。

Aベストアンサー

√a+√bまたは√a-√b と言う形の有理化には
(√a+√b)(√a-√b)=(√a)²-(√b)²=a-b
を利用するのが基本です。…①

(2)の分母の2+√3は 
①において、a=4,b=3の場合という事になりますから
+√b=+√3 部分の符号をマイナスに変えて
√a-√b=√4-√3=2-√3を、分母と分子に掛けてあげれば有理化ができることになります。
①の基本方針を知っていれば、別の数字の有理化でも簡単に応用ができますよ^-^

Qどうして27分の19になるのか教えてください。

どうして27分の19になるのか教えてください。

Aベストアンサー

解説の2^3:3^3=8:27までは理解出来ている前提として答えます。

8:27というのは、
三角錐を2つに分けたうちの頂点Oを含む小さい三角錐:元の三角錐
だと思います。

聞かれていることは、「頂点Aを含む立体」なので、元の三角錐から頂点Oを含む小さい三角錐を引かなければなりません。なので、もとの比である27から8を引くと、19になります。
よって27分の19になるのだと思います。

長文&分かりにくくてすみません。全然わからなければ言ってください。


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング