すみません、高校、大学から離れて少したってまして、ラジアンの計算を忘れてしまいました。次の計算を教えて下さい。

θ=1/10**5(10の5乗という意味です)のとき、
tan(θ/2)はいくらか?

解き方を教えて下さい。よろしくお願いします。

A 回答 (3件)

θの単位がラジアンなら 128yen さんの回答


θの単位が度なら takehiro_m さんの回答のようになります。

あと、補足ですが
ラジアン単位の場合、今のようにθが1に比べて非常に小さいときは
 tan(θ/2)≒ θ/2
の近似式が使えるので、計算機を使うまでもなく
 5*10^(-6) [rad]
と出てきます。
    • good
    • 0
この回答へのお礼

ありがとうございました。
どうもこういう計算から離れると、思い出せなくなってしまいます。

お礼日時:2001/08/15 10:38

θの単位がラジアンであれば、tan(θ/2)=5*10^(-6)になりました。

(計算機でやってみましたが)
もしかしたら、計算機を用いなくてもできる方法があるかもしれません。
ちょっと考えてみます。
    • good
    • 0
この回答へのお礼

ありがとうございました。

お礼日時:2001/08/15 10:39

tan((1/10**5)/2)


=tan((1/100000)/2)
=tan(0.000005)
=0.00000008726
と出ました。
    • good
    • 0
この回答へのお礼

お答えいただきありがとうございました。ただ、単位が”°”ではなく、”rad”でした。わかりづらかったですね。すみません。

お礼日時:2001/08/15 10:41

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q「頭悪いね」「バカだね」 どっちがよりムカつく?

こんにちは、

単純な質問です。

「お前、頭悪いな」

「お前バカだな」

どっちがより言われたらムカつきますか?

Aベストアンサー

どっちもそれなりにムカつきますけど・・・「頭悪いな」かな~

そう言う事を他人に平気で言う奴ほど、バカで頭の悪い人はいないと思いますけど・・・ね?
我がふりなおせよ~ってな感じです。

でもやっぱり傷つくな~否定はしないけど(苦笑)

Qtan 20 tan 30 tan 40 = tan 10

tan 20 tan 30 tan 40 = tan 10
単位は「度」です。

なるべく簡単な、図形的な考察に基づいた、背景が理解できる証明を教えていただきたいです。

Aベストアンサー

>tan 20 tan 30 tan 40 = tan 10

説明の鍵は、tan^2(30度)=1/3 にあります。

(1) 三倍角公式
  tan(3a)=tan(a)*{3-tan^2(a)}/{1-3*tan^2(a)}
(2) 加法公式
  tan(30度±a)={1-3*tan^2(a)}/{3-tan^2(a)}
この二つから、
  tan(30度-a)*tan(3a)*tan(30度+a)=tan(a)
が成立する。

「簡単な、図形的な考察に基づいた、背景が理解できる証明」は手に負えません。
口上だけ。
おあとがよろしいようで。

Q仕事が遅い、頭悪い、力仕事できない 不器用すぎるこんなパートメリットありますか?

仕事が遅い、頭悪い、力仕事できない
不器用すぎるこんなパートメリットありますか?

Aベストアンサー

仕事が早い、頭が良い、力仕事もできる
器用すぎるこんなパートに比べたら、見劣りしますが、
居ないよりはずいぶんましだと思いますよ。

Qαはtan α =1/5を満たす。tan 4α, tan (4α -π

αはtan α =1/5を満たす。tan 4α, tan (4α -π/4 )を求めよ。
という問題をmaximaを使ってやってみたいので,教えてください。
下のようなことまで調べました。

tan 2α の値を求めます。2 倍角の式より
tan 2α =2 tan α/1 - tan2 α=5/12
もう一度2 倍角の式を用いれば、tan 4α の値が
tan 4α =2 tan 2α/1 - tan2 2α=120/119
tan (4α -π/4 )=(tan 4α - tan π/4)/(1 + tan 4α tan π/4)=1/239

Aベストアンサー

簡単のためにα→aとしておきます。

「-->」の後に以下のように入力し[Shift]+[Enter]をしてみて下さい。
(単にコピーandペーストして入力し、[Shift]+[Enter]をすればよいです。

t1:trigexpand(tan(4*a));
t2:ev(t1,tan(a)=1/5);
t3:trigexpand(tan(4*a-%pi/4));
ev(t3,tan(4*a)=t2);

Qこうゆう考えの人って頭悪いと思わないですか?

こうゆう考えの人って頭悪いと思わないですか?
CMとかで嫌いなタレント出てるからとかむかつくからという理由で商品買わない人
僕には理解出来ないですが何か?
商品なんて関係ないしあれですか?坊主にくけりゃ袈裟憎いって?
でも向こうもそうゆう考えもつ人にはかってもらいたくないからいいかなと思うけど

Aベストアンサー

なるほど、そういう考えもできますか!

広告というのは、その商品なりサービスが、一番いい方法で訴求できて、消費者に認知・浸透してアクションを起こしてもらうことが、最終的な目的ですよね。

そしてそのためには、(関係者のしがらみはともかくとして)それにマッチする、イメージを伝えられるに相応しいタレントを起用するのが普通です。
ですから、広告でそのタレントが出ることは、その商品なりサービスのイメージを背負っているということになります。

なので、質問者さまがおっしゃっている「タレントが嫌いだから商品を買わない」という人が出てきても、何らおかしくありません。
別に頭が悪いわけではありません。
よく、不祥事を起こしたタレントが出た時、そのタレントのCMを一斉に引き上げますね。それによって商品イメージが下がることを恐れてのことです。

Q1/2π-θは余角。π-θ、π+θ、1/2π+θに名前はありますか?

表題の通りなのですが
90°からθを引いた角を余角と言いますが、

似た角であるπ-θ、π+θ、1/2π+θに名前はあるでしょうか?
もしあればご教示ください。
よろしくお願いします。

Aベストアンサー

>90°からθを引いた角を余角と言いますが、

用語の使い方が少し変ですね。どの角の余角なのかを明言しなければ意味が通じません。
「90°からθを引いた角をθの余角と言います。」とすれば分かりやすくなりますね。ともかく、加え合わせて90°となる2角をお互いの余角といいます。

>π-θ、π+θ、1/2π+θに名前はあるでしょうか?

ご質問の意味が不明瞭ですから何とも答えようがありませんが、ともかく、加え合わせて180°となる2角をお互いの補角といいます。

Qわざわざナイフからフォークに利き手を持ち替えないと食事出来ない人って、頭悪いの?躾がなってないの?

わざわざナイフからフォークに利き手を持ち替えないと食事出来ない人って、頭悪いの?躾がなってないの?



「俺、右利きだから」とかいう理由でフォークをいちいち右手に持ち替えないと食べられない育ちの悪いクソとは食事したくない。



右利きならナイフが右手、フォークが左手だろ。子どもでも知ってるわ。

それが出来ない成人とか脳腐ってるでしょ?


こんな腐った食事の仕方してる人って親に食事の仕方すら教わってないからこんな気持ち悪いことするんでしょうか?

それとも教わっても理解できないくらいに頭が悪いからなのか?

Aベストアンサー

私はオジサンです。
両親は2人とも地方出身です。イギリスではありません。日本です。
ナイフとフォークを使う食事なんて、した事がないし、必要もなく育ちました。
質問者様とは生きてる世界が違うようですね(笑)。
それとも、わざと炎上させるように挑発的に書いているのでしょうか?
質問者様は、カップ麺って、食べた事ないんでしょうね。
質問者様は、1日の食事代1000円未満なんて、経験ないんでしょうね。
世の中、あなたのような人ばかりではないのですよ。
自身の価値観だけで、相手を否定するのは、テーブルマナーより酷いマナーですよ。

Qこの問題の答えは、6/5a円です。 解き方は、定価は、原価の1+1/5=6/5と書いてあります。 ど

この問題の答えは、6/5a円です。
解き方は、定価は、原価の1+1/5=6/5と書いてあります。
どこから1が出てきてきたのですか⁇
教えてください>_<

Aベストアンサー

原価がa円、それに2割の見込んで定価を付ける
a円+0.2(2割)×a円
の定価になりますね。

a円+0.2(2割)×a円
=a+(2/10)a
=a+(1/5)a   
=a(1+(1/5))円  ←2つの項に共通のaを括り出したら、原価の部分が1となり、利益が1/5となります。
=6/5a円

1は原価a円から来ています。

Q30代なかばで派遣してます。頭悪いし、毎日サービス残業してもいいんだけど、あまり夜遅くまですると寝坊

30代なかばで派遣してます。頭悪いし、毎日サービス残業してもいいんだけど、あまり夜遅くまですると寝坊してしまうし、このまま派遣続けようかと考えてます。こんな人生もありですかねぇ?子供好きだけど、子孫も残さないつもりです。

Aベストアンサー

将来的な計画などを考えても、自分で良しと思えるならありだと思います。

ただ、生涯賃金にして二倍以上の差がつくと言われている非正規と正規では
老後の生活や、中年を過ぎる辺りからの生活に差が出てきます。
周囲との比較というのは自分で気を向ける以上に気になるものです。

また、実生活面でも万が一のことがあった場合など
様々な場面で不利な状況に立たされる可能性も考えるべきです。

そういった点から、生涯派遣労働というのは
今の社会、制度の状態ではお勧めしたいとは思えません。
ただ、正規労働よりもストレスが少ない場合があることも確かです。
ライフスタイルやワークスタイルは個人が選んでよいものですから
そういったリスクを考えてもなお、自分に合っている
もしくは、そういったスタイルが良いと思うのであれば
一つの生き方だと思います。

Qr^2(θ)=cos2θ (-π/4≦θ≦π/4、r≧0)についての問題

検索をさせていただいたのですが、なかなか
似たような問題が出てこなかったので質問させていただきます。
大学院の問題なのですが、いまいちわかりません…。

r^2(θ)=cos2θ (-π/4≦θ≦π/4、r≧0)

(1)dr/dθを求めよ。

自分なりに出した答えが
r(θ) = √cos2θ (∵ r≧0)
dr/dθ = 1/2 x 2 x (-sin2θ)^(-1/2)
    = -1/√sin2θ
    = - √sin2θ/sin2θ  ←有利化

(2)dr/dθ = 0となるθの値と、それに対応するr(θ)を求めよ。

dr/dθ = 0となるのはθ = 0のときで r(0) = √cos0 = 1

(3)直行座標(x,y)で表したときに、dy/dx = 0となるθの値と、それに対応するr(θ)を求めよ。

x = rcosθ、y = rsinθ とおき、
dx/dθ = -rsinθ
dy/dθ = rcosθ

よって
dy/dx = -cosθ/sinθ = -1/tanθ




と、ここでつまってしまいました。。。
(1)、(2)も自信がありません…。


どなたかわかる人がいましたら、
ご教授いただけると非情に助かります。

よろしく御願いします。

検索をさせていただいたのですが、なかなか
似たような問題が出てこなかったので質問させていただきます。
大学院の問題なのですが、いまいちわかりません…。

r^2(θ)=cos2θ (-π/4≦θ≦π/4、r≧0)

(1)dr/dθを求めよ。

自分なりに出した答えが
r(θ) = √cos2θ (∵ r≧0)
dr/dθ = 1/2 x 2 x (-sin2θ)^(-1/2)
    = -1/√sin2θ
    = - √sin2θ/sin2θ  ←有利化

(2)dr/dθ = 0となるθの値と、それに対応するr(θ)を求めよ。

dr/dθ = 0となるのはθ = 0のときで r(0) = √cos0 = 1

(3)直行座標(x,...続きを読む

Aベストアンサー

> r(θ) = √cos2θ (∵ r≧0)
> dr/dθ = 1/2 x 2 x (-sin2θ)^(-1/2)
ここで間違い。
合成関数の微分を確実にマスターすること。
 これは高校レベルです。

dr/dθ =[{cos(2θ)}^(1/2)]'
=(1/2){cos(2θ)}^(-1/2)}{cos(2θ)}'
=(1/2){cos(2θ)}^(-1/2)}{-sin(2θ)}(2θ)'
=-{sin(2θ)}/{cos(2θ)}^(1/2)

> ←有利化
院受験者が誤字では困りますね。
「有理化」と正しく。
有理化はしてもしなくてもどちらでもOKと思います。
高校や大学受験の中高生なら別ですが…。

(2) (1)が間違っていますので たとえ結果が合っていても
(2)は零点になりますね。

>dr/dθ = 1/2 x 2 x (-sin2θ)^(-1/2)
>    = -1/√sin2θ
↑の(1)の間違った計算式からは
dr/dθ =0 となるθは存在しません。
ここで計算間違いに気が付かないといけませんね。

sin(2θ)=0→θ=0→ r(0)=√1=1

> (3)直行座標(x,y)
また誤字です。
「直交座標」のミス。

r^2=cos(2θ)=1-2(sinθ)^2
r^2=1-2(y/r)^2
x^2 +y^2=1-{2y^2/(x^2+y^2)}
(x^2+y^2)^2=x^2+y^2-2y^2
(x^2+y^2)^2=x^2-y^2…(A)
xで微分
2(x^2+y^2)(2x+2yy')=2x-2yy'
y'=-(x/y){x^2+y^2-(1/2)}/{x^2+y^2+(1/2)}
y'=0の時 x^2+y^2=(1/2)…(B) ←なぜx=0が排除されるか考えて下さい。
(A)に代入
x^2-y^2=1/4
x=±√6/4,y=±√2/4…(C)
r≧0,-π/4≦θ≦π/4から
r=√(x^2+y^2)=√2/2
cosθ=x/r=√3/2
∴θ=±π/6
r^2=cos(2θ)より
θ=±π/6→r(±π/6)=(√2)/2

> r(θ) = √cos2θ (∵ r≧0)
> dr/dθ = 1/2 x 2 x (-sin2θ)^(-1/2)
ここで間違い。
合成関数の微分を確実にマスターすること。
 これは高校レベルです。

dr/dθ =[{cos(2θ)}^(1/2)]'
=(1/2){cos(2θ)}^(-1/2)}{cos(2θ)}'
=(1/2){cos(2θ)}^(-1/2)}{-sin(2θ)}(2θ)'
=-{sin(2θ)}/{cos(2θ)}^(1/2)

> ←有利化
院受験者が誤字では困りますね。
「有理化」と正しく。
有理化はしてもしなくてもどちらでもOKと思います。
高校や大学受験の中高生なら別ですが…。

(2) (1)が間違っていますので たとえ...続きを読む


人気Q&Aランキング

おすすめ情報