勉強不足で申し訳ありませんが、物質の紫外吸収について教えて頂けませんか?本には多重結合を持った化合物中を、紫外と可視領域の電磁波が通過すると電子の励起が起こって光が吸収される、とあるのですが、この説明からは単結合しか持たない物質は吸収を示さないのでは?と考えてしまうのですが間違いありませんか?二重結合を持たない化合物ではどんなものでも、最大吸収などは取れないものなのでしょうか?またそれならば、金属イオンの紫外吸収などはどういうことなのでしょう?ご回答よろしくお願いいたします。

A 回答 (1件)

遅くなりまして申し訳ありません。

過去に見たページを探し出せなくなって。(T T
>>この説明からは単結合しか持たない物質は吸収を示さないのでは?
そんなことはありません。しかし通常の紫外可視分光光度計では波長で200nm~700nm程度までしか測定できません。それより波長の短い(エネルギーの高い)領域では空気中の酸素、窒素、水、などなどが光を吸収してしまうため「真空紫外」領域用の分光光度計が必要になります。このような装置では実際に真空中で測定を行います。すると単結合の電子が励起される吸収が測定できます。
>>金属イオンの紫外吸収などはどういうことなのでしょう?
添付URLをご覧下さい。宝石屋さんのHPですが親切なものですねー。
遷移金属の発色はこんな風にして説明されています。またこの発色が遷移金属の特徴でもあります。このような軌道混成が遷移金属が化学合成の触媒として広く用いられる理由の基本にもなっています。

参考URL:http://homepage3.nifty.com/such/shumi/shumi2/col …
    • good
    • 0
この回答へのお礼

わざわざありがとうございました。真空紫外用の分光光度計というのは知りませんでした。またご紹介のHPも、私にもなんとか理解できる内容で大変分かりやすかったです。ありがとうございました。

お礼日時:2005/02/25 20:13

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

QUV測定の波長と色の関係について

UV測定の原理は、紫外線領域のエネルギー強度の光が分子内のπ電子を励起するために起こる、と文献にありましが、いまいち意味がわかりません。分子に光を当てると、その分子が吸収した波長の光が最大吸収となって現れるのでしょうか。例えば、その分子の見た目が黄色なら、黄色の光を反射しているから黄色に見え、UV測定を行ったときは、その分子が一番よく吸収する黄色と反対(補色)の色である紫の領域の波長にピークが表せるのでしょうか。

Aベストアンサー

No.1です。
皆さんもご回答されていますが、問題点を少し整理してみましょう。
(1)物質の色について
可視領域の波長を吸収する物質は、その吸収波長の色の補色に見えます。紫の領域を吸収する物質は、黄色に見えます。可視光領域に吸収を持たない物質は、無色又は白色です。可視光を皆吸収する場合は、黒色です。
(2)可視紫外領域の吸収について
ではなぜ可視紫外領域の光吸収が起こるのか。これは、物質を構成している原子や分子の、電子のエネルギー状態の遷移によって生じます。
各々の電子の状態によって、吸収するエネルギーが決まっており、様々な物質を調べれば、可視紫外領域のいろんな波長の吸収が見られます。例えば、半導体のGaAsのバンドギャップ吸収は約870nm、GaNは約370nmです。錯イオンのMnO4^2-は、250~500nmに吸収があります。不純物や格子欠陥での吸収もあります。
また同一物質でも、複数の吸収を持つ場合もあります。何種類かの電子が励起されれば、複数の吸収が生じますし、ある基底状態から、複数の励起状態に励起可能な場合には、複数の吸収ピークを持ちます。

(3)有機分子の吸収について
可視および紫外領域の吸収は、π電子のエネルギー状態の遷移に起因しているようです。π電子をもたない有機分子は、可視紫外領域に吸収を持たないみたいです。

質問者さんは、有機分子の光吸収について勉強されているのでしょうか。
物に色がついて見えるということ、その原因となっている光吸収という現象には、いくつか種類があるということを、理解して頂けたでしょうか。
有機分子の色素なども、その一例です。
長くなりましたが、如何でしょうか。下記に、多少の記載があります。ご参考まで。

参考URL:http://www.tagen.tohoku.ac.jp/labo/arima/lecture/spectroscopy/pi_electron.html

No.1です。
皆さんもご回答されていますが、問題点を少し整理してみましょう。
(1)物質の色について
可視領域の波長を吸収する物質は、その吸収波長の色の補色に見えます。紫の領域を吸収する物質は、黄色に見えます。可視光領域に吸収を持たない物質は、無色又は白色です。可視光を皆吸収する場合は、黒色です。
(2)可視紫外領域の吸収について
ではなぜ可視紫外領域の光吸収が起こるのか。これは、物質を構成している原子や分子の、電子のエネルギー状態の遷移によって生じます。
各々の電子の状態によっ...続きを読む

QL体とD体

糖はD体、アミノ酸はL体の異性体で構成されますが、異性体のD体とL体の見分け方を教えてください。

Aベストアンサー

 構造式を見てDとLを見分ける方法についての質問と解釈して解答します。
 D、L表示法は糖やアミノ酸の絶対配置が求められる以前からある表記法です。(+)-グリセルアルデヒドにD、(-)-グリセルアルデヒドにLを接頭 辞としてつけます。DかLか見分けたい化合物(糖やアミノ酸)に含まれる不斉炭素のうち、IUPACルールにおいて最も番号の大きい不斉炭素の絶対配置がD-(+)-グリセルアルデヒドと等しい場合にD体とし、L-(-)-グリセルアルデヒドと等しい場合をL体とします。因みにD-(+)-グリセルアルデヒドはFischer投影式において、上がCHO、右がOH、左がH、下がCH2OHとなる構造です。
 もうひとつ言っておくと、L体の糖やD体のアミノ酸もちゃんと存在します。血液型を決める多糖の構成成分にはL-フコースがあり、哺乳動物の脳にはD-セリンとD-アスパラギン酸が存在し、脳の高次機能に関係しているのではないかと考えられています。

QTLCスポットのUV発色について

TLCを使った実験で、展開後、スポットを確認するために、紫外線ランプを当てますよね。私の実験室では、長波366nm、短波254nmのランプを使います。

そのときの発色の原理について、質問があります。

TLCプレート(silica gel 60 F254)を使っているのですが、プレート上に展開された物質が、長波でも短波でも反応する場合、長波では紫外線を当てるとその物質が蛍光発色し、短波では、その部分だけ消光します。
共役二重結合がある場合、紫外線に反応すると理解していたのですが、長波と短波を当てたときに、長波だけ反応する物質、短波だけ反応する物質があり,なぜこのような結果になるのか不思議です。
自分なりに考えてみたところ、「短波で消光するのは、シリカゲルに蛍光物質がぬってあって、その上に展開した物質が覆うように存在するからであり、別に共役二重結合を持たなくてもプレート上に展開された物質はすべて確認できるのかな。長波で反応する場合は、共役二重結合によって紫外線を吸収した後、別の波長として放出し、蛍光物質として検出できるのかな。」と思いましたが、よくわかりません。
どなたか、ご存知の方、教えてはいただけないでしょうか。よろしくお願いいたします。

TLCを使った実験で、展開後、スポットを確認するために、紫外線ランプを当てますよね。私の実験室では、長波366nm、短波254nmのランプを使います。

そのときの発色の原理について、質問があります。

TLCプレート(silica gel 60 F254)を使っているのですが、プレート上に展開された物質が、長波でも短波でも反応する場合、長波では紫外線を当てるとその物質が蛍光発色し、短波では、その部分だけ消光します。
共役二重結合がある場合、紫外線に反応すると理解していたのですが、長波と短波を当てたときに...続きを読む

Aベストアンサー

共役二重結合のような電子が励起されやすい状態にある化合物は強いエネルギーを持った短波長の紫外線によって励起され発光ではなく熱となって基底状態へともどります。つまり紫外線を吸収するので見た目はその部分だけ消光します。当然全ての物質が吸収するわけではなく、展開後に溶媒を減圧したりして完全に乾かさなくてもUVで検出されないことからも分かります。長波長の紫外線で光る物質は長波長の波長で励起されて可視光を放つものです、エネルギーが弱いためにどんな物質でもというわけではありません。光る物質の多くは長い共役系を持っているなど弱いエネルギーでも励起できそうな物ばかりですよね。
ちなみにシリカゲルのUV-Visスペクトルを測定すると260nm以下あたりから吸収域を持っていることが分かります。

Q赤外吸収スペクトルの帰属

赤外スペクトルの帰属のしかたを本で学んでいます。
その本には、こう書いてあるのです
「表より、3300cm-1に-OHの伸縮振動、1700cm-1に-C=Oの伸縮振動の吸収が現れている」
表とは、さまざまな官能基の特性振動数を示したもので、私の手元にあります。
疑問点は、何故3300cm-1のところで-OHの伸縮振動であるといえるのでしょうか。表を見ると、3300cm-1のところには、アルコールやアミンなど、ほかの官能基もこの振動数をとっているように見えます。どのようにして、一つの官能基を決めているのでしょうかが、さっぱりわかりません。
どなたか、教えてください、お願いします。

Aベストアンサー

赤外スペクトルの帰属を考える際には、その吸収の形状も重要です。たとえば、波数が同じであっても、吸収の強弱や、幅の広さから明確に区別できる場合があります。それらの情報は吸収の波数とともに記載されているのが普通です。
たとえば、3300cm-1付近のC-H結合による吸収は弱いのに対して、OHの吸収は非常に強く、幅も広いので、スペクトルを見れば容易に区別できます。

それと、赤外スペクトルの基本として、この方法で検出されるのは、「個々の結合に関する情報」です。これは赤外スペクトルが、結合の振動を検出しているのだと考えれば容易に理解できますよね。
たとえば、アルコールであれば、O-H結合とC-O結合を持っていますが、それらが異なった波数に吸収を持ちます。見方を変えれば、カルボン酸や水もO-H結合をもちますので、その近辺に吸収を持つことになります。
また、エーテルであれば、C-O結合を持ちますので、アルコールのC-O結合の相当する吸収の付近に吸収を持つことになります。すなわち、結合単位で考えれることが基本です。また、振動には何種類かあるために、単一の結合が複数の吸収を持つことも多いです。

ともかく、実際にスペクトルを見比べて学習することをお勧めします。OHの3300cm-1付近の吸収は最も判別の容易な吸収の一つだと思います。

赤外スペクトルの帰属を考える際には、その吸収の形状も重要です。たとえば、波数が同じであっても、吸収の強弱や、幅の広さから明確に区別できる場合があります。それらの情報は吸収の波数とともに記載されているのが普通です。
たとえば、3300cm-1付近のC-H結合による吸収は弱いのに対して、OHの吸収は非常に強く、幅も広いので、スペクトルを見れば容易に区別できます。

それと、赤外スペクトルの基本として、この方法で検出されるのは、「個々の結合に関する情報」です。これは赤外スペクトルが、結合の振...続きを読む


人気Q&Aランキング

おすすめ情報