色彩を教える人になるための講座「色彩講師養成講座」の魅力とは>>

虚数はグラフに書けないと聞きますが一体何者何ですか?
何かを表す為に文字はあるけれど実在はしないみたいな感じですか?

gooドクター

A 回答 (8件)

「存在するとはどう言う事か」と言う解釈にもよると思います。

「(いわゆる)目に見えないものは存在しない」と言う意味では虚数は存在しないと言えるかもしれませんが、現実世界を記述する量子力学の式には虚数が出て来ます。つまり虚数を使わなければ現実世界が表せないわけですから、そう言う意味では「虚数は存在する」と言えます。
    • good
    • 1

逆に聞きますけど、では実数(整数,自然数)は存在するんですか?


数なんて本質的に抽象概念なので、虚数も自然数と同じように存在します。

グラフに描けないというのは、複素数から複素数への関数だと表現するのに4次元必要になるので3次元までしか認識できない人に分かるように普通のグラフには描けないですね。
    • good
    • 1

複素数は、便利な計算規則を定めた2次元ベクトルの一種。


実数に向きの概念を加え、便利に計算できるように演算規則を定めたもの。

そもそも数の実在性を論じるのは無意味。実在とはなんでしょうか?

負の数は7世紀頃、商業上の必要性(損得の勘定)から生まれたけど
実在しないとして17世紀まで学者は頑として否定してました。
でも用途や対応する「概念」があれば「数」として成立出来ます。

物理では大きさと位相(方向)をもつ量を現すのに
複素数は不可欠です。

負の数+0+正の数=実数は、方向の自由が2方向しかない
劣化した複素数と言えないこともないです。
    • good
    • 1

既に回答あるので後押し。



虚数はy軸。

交流の有効電力、無効電力の計算に便利。

 大学は機械工学だったからと言うわけではないけど、あまり勉強してなかったから、電気工学に虚数なんてわからなかつた。

たまたま就職先で有効電力と無効電力の概念ないと仕事出来なかった。あまり難しい話ではないけど、虚数使う方が便利。

 数学は現場に必須。学校で紙の上で計算しているとアホくさいけど、現代社会数学なしはあり得ない。
    • good
    • 0

虚数とは実数でない複素数の事です


実数は直線上の1点を表す数であるのに対して
x,yを実数とすると
複素数
x+yi
とは
平面上の1点(x,y)を表す数なのです

実数xはx軸上の1点(x,0)に対応しx軸を実軸といい
虚数yiはy軸上の1点(0,y)に対応しy軸を虚軸といいます

x+yi=(x,y)
    • good
    • 0

その数値の、目に見える物が自然界に存在しない、という事です。

その名の通り、自然界の物は、自然数でしか表せないのがほとんど。只、他の方もおっしゃる通り、概念的、便宜的に計算する必要がある場合、例えば電気工学の交流理論では便宜的に虚数を使って計算します。出た答えは、測定器で測った値と一致します。
    • good
    • 0

仮定の数。


「地球が真っ平らだったら」ってのと同じ。実際はそうじゃないけど、その仮定で話を進めることは出来る。場合によっては上手く真理に辿り着く。

>何かを表す為に文字はあるけれど実在はしないみたいな感じですか?
それで合ってると思う。
    • good
    • 1

虚数は平面グラフに書けないというだけで、確か三次元グラフには書けると思いましたが?



で、そもそも虚数は実在はしなくても概念上は存在します。

というか、数学の世界に「実在」という概念をぶっこむのはひたすら哲学の世界に入り込みませんか?
    • good
    • 2

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

gooドクター

このQ&Aを見た人がよく見るQ&A

このカテゴリの人気Q&Aランキング