色彩を教える人になるための講座「色彩講師養成講座」の魅力とは>>

質量mの物体がx方向にvで等速直線運動をしている時、Aの位置における原点から見た物体の角運動量は、

→L=(→OA)×m(→v)
|→L|=√2amv

で合ってますか?

「質量mの物体がx方向にvで等速直線運動を」の質問画像

A 回答 (2件)

前の質問に回答したのに、質問者さんが削除したみたいですね。



O点から見たA点の速度 →v の角運動量は

 →La = m * (→OA) × (→v)

です。「(→OA) × (→v)」はベクトルの外積です。

向きは「紙の表→裏」向き、
大きさは
 |→La| = amv
です。

ちなみに、前の質問にあった

・y 軸上の B(0, a) の速度 →v の角運動量は
 向きは「紙の表→裏」向き、
 大きさは
  |→Lb| = amv

・C(a, a) の速度 →v の角運動量は
 向きは「紙の表→裏」向き、
 大きさは
  |→Lc| = amv

で、すべて同じ向き、同じ大きさです。
    • good
    • 0
この回答へのお礼

すみません。何度もありがとうございます。

お礼日時:2021/07/07 23:31

|→L|は(→OA)とm(→v)がつくる平行四辺形の面積=amv


    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング