No.1ベストアンサー
- 回答日時:
3辺がそれぞれ正であるための条件を求めます。
-2x-1>0
x<- 1/2
x^2+2x>0
x(x+2)>0
x<-2 , 0<x
x^2+x+1=(x + 1/2)^2 + 3/4>0
以上より、
x<-2
3辺の大小関係を調べます。
(x^2+x+1) - (x^2+2x)
=-x+1>0
(x^2+x+1) - (-2x-1)
=x^2+3x+2
=(x+2)(x+1)>0
以上より、最も長い辺は x^2+x+1
余弦定理により、
(x^2+x+1)^2=(-2x-1)^2+(x^2+2x)^2-2(-2x-1)(x^2+2x)cosθ
x^4+x^2+1+2x^3+2x+2x^2=4x^2+4x+1+x^4+4x^3+4x^2+2(2x+1)(x^2+2x)cosθ
2(2x+1)(x^2+2x)cosθ=-2x^3-5x^2-2x
2x(2x+1)(x+2)cosθ=-x(2x+1)(x+2)
cosθ= - 1/2
したがって、
θ=2π/3
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 数学 三角関数と分数関数について 2 2022/08/10 22:39
- 数学 2つの角と1つの辺から辺の長さを求める。 色々やったんですけど 結局解けなかったので質問します。 x 10 2023/05/12 08:59
- 数学 数1余弦定理 三角形ABCにおいてa=2√3、b=3-√3、C=120°のとき 残りの辺の長さと角の 5 2022/11/24 21:27
- 数学 数学2B入門問題精講 第4章 三角関数 練習問題9 次の2直線l1,l2のなす角の大きさをそれぞれ求 1 2023/04/11 16:21
- 数学 三角形ABCにおいてa=2√3、b=3-√3、C=120°のとき 残りの辺の長さと角の大きさを求めよ 4 2022/11/24 21:56
- 数学 チャート式数学(黄)i.aの問158について 3 2022/10/20 12:10
- 数学 ベクトル方程式(ヘッセの標準形)についての質問 2 2022/04/23 18:00
- 高校 数学Aの問題で、円に内接するN角形(N>4)の対角線の総数は ア 本である。また、Fの頂点三つからで 1 2023/04/13 17:47
- 数学 AB=2dとなる理由を教えてください 4 2023/08/28 22:38
- 数学 線形代数の対称行列についての問題がわからないです。 2 2023/01/08 14:59
このQ&Aを見た人はこんなQ&Aも見ています
-
とっておきの「夜食」教えて下さい
真夜中に小腹がすいたときにこっそり作るメニュー、こっそり家を抜け出して食べに行くお店… 人には言えない、けど自慢したい、そんなあなたの「とっておきの夜食」を教えて下さい。
-
一番好きな「クリスマスソング」は?
街に出ればクリスマスソングを聞かない日はないくらい、 いろんな曲がかかっていますよね。 あなたが一番好きな「クリスマスソング」を教えてください!
-
遅刻の「言い訳」選手権
よく遅刻してしまうんです…… 「電車が遅延してしまい遅れました」 「歯医者さんが長引いて、、、」 「病院が混んでいて」 などなどみなさんがこれまで使ってきた遅刻の言い訳がたくさんあるのではないでしょうか?
-
この人頭いいなと思ったエピソード
一緒にいたときに「この人頭いいな」と思ったエピソードを教えてください
-
14歳の自分に衝撃の事実を告げてください
タイムマシンで14歳の自分のところに現れた未来のあなた。 衝撃的な事実を告げて自分に驚かせるとしたら何を告げますか?
-
数学の問題で困っています。
数学
おすすめ情報
- ・「みんな教えて! 選手権!!」開催のお知らせ
- ・漫画をレンタルでお得に読める!
- ・【選手権お題その1】これってもしかして自分だけかもしれないな…と思うあるあるを教えてください
- ・【穴埋めお題】恐竜の新説
- ・我がまちの「給食」自慢を聞かせてっ!
- ・冬の健康法を教えて!
- ・一番好きな「クリスマスソング」は?
- ・集合写真、どこに映る?
- ・自分の通っていた小学校のあるある
- ・フォントについて教えてください!
- ・【大喜利】【投稿~12/6】 西暦2100年、小学生のなりたい職業ランキング
- ・これが怖いの自分だけ?というものありますか?
- ・スマホに会話を聞かれているな!?と思ったことありますか?
- ・それもChatGPT!?と驚いた使用方法を教えてください
- ・見学に行くとしたら【天国】と【地獄】どっち?
- ・とっておきの「夜食」教えて下さい
- ・これまでで一番「情けなかったとき」はいつですか?
- ・遅刻の「言い訳」選手権
- ・「覚え間違い」を教えてください!
- ・とっておきの手土産を教えて
- ・「平成」を感じるもの
- ・この人頭いいなと思ったエピソード
- ・あなたの「必」の書き順を教えてください
- ・10代と話して驚いたこと
- ・14歳の自分に衝撃の事実を告げてください
- ・人生最悪の忘れ物
- ・あなたの習慣について教えてください!!
- ・都道府県穴埋めゲーム
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
cos(2/5)πの値は?
-
1+cosθをみると何か変形ができ...
-
eの2πi乗は1になってしまうんで...
-
e^2xのマクローリン展開を求め...
-
数学の質問です。 0≦θ<2πのとき...
-
フーリエ級数|cosx|
-
面積分の計算
-
フーリエ?
-
三角比の問題を教えて下さい
-
xcosθのxの偏微分を教えてくだ...
-
cos2x=cosx ってなにを聞かれ...
-
cosθやsinθを何乗もしたものを...
-
楕円錐の、斜め断面は、円?
-
cos(arcsinx) = sqrt(1-xx)
-
-1/(cosθ+isinθ)=cos(-θ)+isin(...
-
三角関数
-
三角関数の基本極限について
-
(cos(x))^1/2の不定積分
-
かなりの難問
-
-cosθ=cos2θってθについてどう...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
1+cosθをみると何か変形ができ...
-
eの2πi乗は1になってしまうんで...
-
e^2xのマクローリン展開を求め...
-
数学の質問です。 0≦θ<2πのとき...
-
cos2x=cosx ってなにを聞かれ...
-
フーリエ級数|cosx|
-
cos(2/5)πの値は?
-
cos60°が、なぜ2分の1になるの...
-
積分
-
不定積分∫dx/√(1-x^2)=arcsin(x...
-
三角関数で、
-
△ABCにおいてAB=4、BC=6、CA=5...
-
三角関数
-
1/ a + bcosx (a,b>0)の 不定積...
-
(cosθ+isinθ)^2=cos2θ+isin2θ ...
-
cos40°の値を求めています。
-
cos2θ+cosθ+1=0
-
[高1数学A 三角比の相互関係] ...
-
極座標の偏微分について
-
cos(θ-π/2)=cos(π/2-θ)になるの...
おすすめ情報