教えて! goo のコンテンツに対する取り組みについて

ΔABCの重心をGとおく。辺ACの長さは4cm、∠AGC=90°です。
この場合、BGの長さは何センチメートルですか?

A 回答 (2件)

今どきの中学では円周角の定理とか使えるんだっけかな?


使ってよいのならGがACを直径とする円周上の点であることが円周角の定理の逆からすぐにわかる。
ACの中点をOとすると上記のことからAO=CO=GO=2cmであること示せる。
重心Gは中線BOを2:1に内分する点であるからBG:GO=2:1
以上のことから
BG=2*OG=4cm
    • good
    • 0
この回答へのお礼

回答ありがとうございます。
中三で習います。

お礼日時:2021/10/23 10:33

Gは△ABCの重心だから


↑GA+↑GB+↑GC=0
↓両辺から↑GA+↑GCを引くと
↑GB=-(↑GA+↑GC)
↓両辺の絶対値をとると
|BG|=|↑GA+↑GC|
↓両辺を2乗すると
|BG|^2=|↑GA+↑GC|^2
|BG|^2=|GA|^2+2(↑GA,↑GC)+|GC|^2
|BG|^2=|GA|^2+2|GA||GC|cos∠AGC+|GC|^2
|BG|^2=|GA|^2+2|GA||GC|cos90°+|GC|^2
|BG|^2=|GA|^2+|GC|^2
↓△AGCは直角3角形だから3平方の定理から
|BG|^2=|AC|^2


|BG|=|AC|=4
    • good
    • 0
この回答へのお礼

回答ありがとうございます。
申し訳ございませんが、中学生のレベルでお願いします。
答えは合っています。

お礼日時:2021/10/23 08:21

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング