A 回答 (3件)
- 最新から表示
- 回答順に表示
No.3
- 回答日時:
頂点が(2、6)だから
y=a(x-2)^2+6
(1、4)を通るから
4=a(1-2)^2+6 → a=―2
よって
y=-2(x-2)^2+6=-2x^2+8x-8+6=-2x^2+8x-2
No.2
- 回答日時:
任意の放物線は、任意の定数 a, b, c を使って
y = ax^2 + bx + c ①
と書けます。
これを「平方完成」の形にすると
y = a[x^2 + (b/a)x] + c
= a[x^2 + (b/a)x + (b/2a)^2 - (b/2a)^2] + c
= a[x^2 + (b/a)x + (b/2a)^2] - b^2/4a + c
= a[x + (b/2a)]^2 - (b^2 - 4ac)/(4a)
という形になって、
x = -b/2a
のときに [ ]^2 の中が 0 になって、そこが「頂点」になります。
そのとき、 [ ]^2 の中は 0 なので
y = -(b^2 - 4ac)/a
となって、頂点の座標は
(-b/2a, -(b^2 - 4ac)/(4a))
になります。
頂点の座標が (2, 6) なので
-b/2a = 2 ②
-(b^2 - 4ac)/(4a) = 6 ③
ということです。
②より
b = -4a
これを③に代入すれば
-(16a^2 - 4ac)/(4a) = -4a + c = 6
よって
c = 4a + 6
これを①に代入すれば
y = ax^2 - 4ax + 4a + 6 ④
これが (1, 4) を通るので
4 = a - 4a + 4a + 6
→ a = -2
これを④に代入すれば
y = -2x^2 + 8x - 2
やっていることは、#1 さんと同じです。
結果も同じで、#1 さんの結果を展開すれば上のようになります。
No.1
- 回答日時:
頂点が点(2,6)の放物線は
y=a(x-2)^2+6
点(1,4)を通るから
4=a(1-2)^2+6
4=a(-1)^2+6
4=a+6
-2=a
∴
y=-2(x-2)^2+6
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
このQ&Aを見た人はこんなQ&Aも見ています
-
準・究極の選択
「年収1000万円で一生カレーライス」か 「年収180万円で毎日何でも食べ放題」 あなたはどちらを選びますか?
-
フォロワー20万人のアカウントであなたのあるあるを披露してみませんか?
あなたが普段思っている「これまだ誰も言ってなかったけど共感されるだろうな」というあるあるを教えてください
-
映画のエンドロール観る派?観ない派?
映画が終わった後、すぐに席を立って帰る方もちらほら見かけます。皆さんはエンドロールの最後まで観ていきますか?
-
海外旅行から帰ってきたら、まず何を食べる?
帰国して1番食べたくなるもの、食べたくなるだろうなと思うもの、皆さんはありますか?
-
天使と悪魔選手権
悪魔がこんなささやきをしていたら、天使のあなたはなんと言って止めますか?
-
この数学の問題の解き方を教えてくださいm(_ _)m
数学
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・街中で見かけて「グッときた人」の思い出
- ・「一気に最後まで読んだ」本、教えて下さい!
- ・幼稚園時代「何組」でしたか?
- ・激凹みから立ち直る方法
- ・1つだけ過去を変えられるとしたら?
- ・【あるあるbot連動企画】あるあるbotに投稿したけど採用されなかったあるある募集
- ・【あるあるbot連動企画】フォロワー20万人のアカウントであなたのあるあるを披露してみませんか?
- ・映画のエンドロール観る派?観ない派?
- ・海外旅行から帰ってきたら、まず何を食べる?
- ・誕生日にもらった意外なもの
- ・天使と悪魔選手権
- ・ちょっと先の未来クイズ第2問
- ・【大喜利】【投稿~9/7】 ロボットの住む世界で流行ってる罰ゲームとは?
- ・推しミネラルウォーターはありますか?
- ・都道府県穴埋めゲーム
- ・この人頭いいなと思ったエピソード
- ・準・究極の選択
- ・ゆるやかでぃべーと タイムマシンを破壊すべきか。
- ・歩いた自慢大会
- ・許せない心理テスト
- ・字面がカッコいい英単語
- ・これ何て呼びますか Part2
- ・人生で一番思い出に残ってる靴
- ・ゆるやかでぃべーと すべての高校生はアルバイトをするべきだ。
- ・初めて自分の家と他人の家が違う、と意識した時
- ・単二電池
- ・チョコミントアイス
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
至急!y=2X^2を変形(平方完成)...
-
y=ax^2+bx+cのbは何を表してい...
-
楕円の書き方
-
添付画像の放物線はどんな式で...
-
数学の質問です。 あるA点から...
-
日常生活で放物線や双曲線の例...
-
3点を通る放物線が存在する条...
-
双曲線の焦点を求める時はなぜ√...
-
車の曲線は数式に当てはまる...
-
二次関数の良さ
-
吊り橋のケーブルの形は放物線?
-
楕円の焦点,中心を作図で求め...
-
数学 2次関数
-
放物線y=2x² を平行移動した曲...
-
放物線y=x^2+a と円x^2+y^2=9に...
-
点と曲面の距離
-
頂点が点(2,6)で、点(1,4)を通...
-
放物線に関して反対側・・・?
-
極座標 楕円
-
楕円の一つの焦点から出た光は...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
至急!y=2X^2を変形(平方完成)...
-
y=ax^2+bx+cのbは何を表してい...
-
楕円の焦点,中心を作図で求め...
-
【至急】困ってます! 【1】1、...
-
放物線y=2x² を平行移動した曲...
-
2:1正楕円とは何ですか?
-
数学 不等式の表す領域
-
2つの楕円の交点の求め方が分...
-
双曲線の焦点を求める時はなぜ√...
-
添付画像の放物線はどんな式で...
-
tの値が変化するとき、放物線y=...
-
軌跡の「逆に」の必要性につい...
-
数学の問題です。教えてくださ...
-
楕円の書き方
-
【 数I 2次関数 】 問題 放物線...
-
放物線の対称移動の問題の答え...
-
X軸に関して対称といえる理由を...
-
噴水はなぜ放物線をえがくので...
-
この問題は「円の中心の軌跡を...
-
放物線z= x^2 + y^2上の点(1,2,...
おすすめ情報