No.1ベストアンサー
- 回答日時:
y = 5sin(2x) + 3sin(3x) + 4sin(5x)
まず、x=0 のとき
y=0
になることが分かります。
また、2x, 3x, 5x の最大公約数である x が、任意の整数 m を用いて
x = 2mπ
のときにも
y=0
になることが分かります。
グラフからも 360° = 2π が周期であると読み取れますね。
式の上からも
5sin(2x) = 10sin(x)cos(x)
3sin(3x) = 3sin(x + 2x)
= 3[sin(x)cos(2x) + cos(x)sin(2x)]
= 3[sin(x)cos(2x) + cos(x)・2sin(x)cos(x)]
= 3[sin(x)cos(2x) + 2cos^2(x)sin(x)]
= 3[cos(2x) + 2cos^2(x)]sin(x)
4sin(5x) = 4sin(x + 4x)
= 4[sin(x)cos(4x) + cos(x)sin(4x)]
= 4[sin(x)cos(4x) + cos(x)・2sin(2x)cos(2x)]
= 4[sin(x)cos(4x) + 2cos(x)・2sin(x)cos(x)cos(2x)]
= 4[sin(x)cos(4x) + 4cos^2(x)cos(2x)sin(x)]
= 4[cos(4x) + 4cos^2(x)cos(2x)]sin(x)
であることから
y = [f(x) + g(x) + h(x)]sin(x)
ここで
f(x) = 10cos(x)
g(x) = 3[cos(2x) + 2cos^2(x)]
h(x) = 4[cos(4x) + 4cos^2(x)cos(2x)]
と書けることがわかります。
[f(x) + g(x) + h(x)] がどのような周期をもつのかは分かりませんが、少なくともそれを「振幅」にもつ「sin(x)」の関数であることは確かです。
「sin(x)」の周期は「2π」ですから、y は「周期 2π の周期関数」であることになります。
yhr2さん、ありがとうございます。見事に数式で導かれましたね。流れるようです。じっくり見て、理解しておこうと思います。ありがとうございました。
No.2
- 回答日時:
今回のような sin(ax) の一次結合だと、
各 sin(ax) の基本周期 2π/a の最小公倍数が
y の基本周期になることが解りますが、
一般に複雑な関数 f(,,) を持ってきて
y = f(sin 2x,sin 3x,sin 5x) の周期なんて
簡単には判りません。
必要条件で絞り込んだらどうですかね。
g(x) が周期 T を持つならば、g(x) = g(x+T) が成り立ちます。
何か適当な x をいくつかこの式へ代入して
T の方程式として解けば、周期の候補が限定できます。
今回の例であれば、x = 0 の 1個だけで十分でしょう。
>各 sin(ax) の基本周期 2π/a の最小公倍数が
y の基本周期になる
>一般に…y = f(sin 2x,sin 3x,sin 5x) の周期なんて
簡単には判りません。
なるほど、簡単には分からないのですね。
>g(x) = g(x+T) …今回の例であれば、x = 0 の 1個だけで十分でしょう。
この方法でいくのが王道なのでしょうかね。ありがとうございました。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
このQ&Aを見た人はこんなQ&Aも見ています
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・街中で見かけて「グッときた人」の思い出
- ・「一気に最後まで読んだ」本、教えて下さい!
- ・幼稚園時代「何組」でしたか?
- ・激凹みから立ち直る方法
- ・1つだけ過去を変えられるとしたら?
- ・【あるあるbot連動企画】あるあるbotに投稿したけど採用されなかったあるある募集
- ・【あるあるbot連動企画】フォロワー20万人のアカウントであなたのあるあるを披露してみませんか?
- ・映画のエンドロール観る派?観ない派?
- ・海外旅行から帰ってきたら、まず何を食べる?
- ・誕生日にもらった意外なもの
- ・天使と悪魔選手権
- ・ちょっと先の未来クイズ第2問
- ・【大喜利】【投稿~9/7】 ロボットの住む世界で流行ってる罰ゲームとは?
- ・推しミネラルウォーターはありますか?
- ・都道府県穴埋めゲーム
- ・この人頭いいなと思ったエピソード
- ・準・究極の選択
- ・ゆるやかでぃべーと タイムマシンを破壊すべきか。
- ・歩いた自慢大会
- ・許せない心理テスト
- ・字面がカッコいい英単語
- ・これ何て呼びますか Part2
- ・人生で一番思い出に残ってる靴
- ・ゆるやかでぃべーと すべての高校生はアルバイトをするべきだ。
- ・初めて自分の家と他人の家が違う、と意識した時
- ・単二電池
- ・チョコミントアイス
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
底辺と角度から、高さを求める。
-
sin²θとsinθ²と(sinθ)²って全部...
-
どんな整数であってもsin(nπ)=0...
-
2つの円の一部が重なった図
-
(2)で質問なのですが、なんでsi...
-
数学 sin1/2は何を表しているの...
-
sin(乗数)(角度)の計算の仕方に...
-
積分 ∫√(4-x^2)dxについて
-
sinのマイナス1乗の計算方法を...
-
sin2tの積分の仕方わかる人いま...
-
積分について教えてください
-
2cos二乗Θ+3sinΘ-3=0を解け。
-
sinx=cosxの解き方。
-
三角関数の答えが1以上になるの...
-
数2の問題です θ=7/6π のsinθ...
-
数IIの問題で分からないです
-
tを消したい!!
-
0°≦θ≦180° sinθ=0° のとき、 θ=...
-
sin1の1って一体・・・
-
簡単な偏微分についての質問です。
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
sin²θとsinθ²と(sinθ)²って全部...
-
周期の最小値?
-
底辺と角度から、高さを求める。
-
2つの円の一部が重なった図
-
sinωTをTで積分。
-
eの積分について
-
積分 ∫√(4-x^2)dxについて
-
sinx=cosxの解き方。
-
e^(-x)*|sinx| これを積分する...
-
sinのマイナス1乗の計算方法を...
-
数学 sin1/2は何を表しているの...
-
f(x)=(px+q)sin(2x)/(ax+b) の問題
-
大学受験時のsin,log,lim,xの表記
-
三角関数の答えが1以上になるの...
-
(sinx)^6の積分を教えてください
-
『楕円球体の三重積分を極座標...
-
広義積分
-
これsin75°を求めよで答え √6+...
-
sin2tの積分の仕方わかる人いま...
-
1/tan^3(x)の積分 どちらが正し...
おすすめ情報