これは<量子力学演習>(しょうか房、小出昭一郎著)のP62の<3.22>に載っている問題です。
s状態(l=0)水素原子の波動関数をΨn=Rn(r)=Un(r)/rとし、Unに対するシュレーディンガー方程式を求めると、
{-(h^2/2m)d^2/dr^2-e^2/4πεr}Un=EnUnとなります。
ここで波動関数の有界性より、∫|Ψn|^2dv ∝ ∫|Un|^2dr = 有界とならねばなりません。そこまではわかるんですが、そのあとに
Enが飛び飛びの値をとるためにはなぜかr=0近傍でU(0)=0とならねばならないと書いてあるんですがこれは何処から出てきたんでしょうか?

A 回答 (2件)

量子力学では、正規条件||ψ||=1を満たすことが要求されているのであって、波動関数の値が無限大なってはいけないということはありません。

実際、相対論的量子力学ではr->0で波動関数が無限大の解がゆるされます。この問題はパウリによって議論されており、ハミルトニアンのエルミート性を使います。

動径関数の一般解は
  R(r)=a_1r^L{1+F1(r)}+a_2r^(-(L+1)){1+F2(r)}
とかけます。L>0の場合は波動関数の正規性からa_2=0が得られますが、L=0の場合はa_2がゼロでなくともr=0の近傍で積分は発散せず正規性からはa_2=0が結論されません。L=0の時は、ハミルトニアンHのエルミート性からa_2=0が出てきます。HがエルミートであればHの固有状態ψに対して、任意の状態φに対して
  (Hφ,ψ)=(φ,Hψ)
が成り立ちます。これから少し議論を要しますが結論として、r->0でψが満たすべき条件として
  lim r^2dψ/dr=0 ( r->0)
が得られます。これに一般解を代入するとa_2=0が導かれます。

小出氏の書をはじめ多くの量子力学の教科書では同じ議論(a_2がゼロでなければ、波動関数が原点で発散するのでa_2=0)がなされていますが、これは正しくないといえます。

この問題を正しく扱っている本として
 荒木源太郎著「量子力学」
がありますのでご覧になって下さい。
    • good
    • 0
この回答へのお礼

うおぉ、難しそうだ(笑汗)求めていた回答にど真ん中ストライクです、ありがとうございます!勉強します!

お礼日時:2005/04/13 10:52

U(0)≠0とすると


Ψn=Rn(r)=Un(r)/r
がr=0で発散します.
そのためにU(0)=0
しかも1/rより早く0にならなければならないので,
r=0近傍でU(0)=0なのではないでしょうか?

この回答への補足

#2のternoさんがおっしゃるように、自分も「波動関数が発散してはいけない」のなら理由はわかるんですが、物理量として有界が要求されているのは全空間の確率積分だと思って質問しました。回答ありがとうございます!

補足日時:2005/04/13 10:41
    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q調和振動子の波動関数

調和振動子のポテンシャル中にある相互作用していない2つの電子において量子数nのエネルギー固有状態を記述する波動関数ψn(x),スピン波動関数をφ^{±}とする。
I基底状態Etot=2*E1を記述する2電子波動関数を全てもとめよ
II第一励起状態Etot=E1+E2を記述する2電子波動関数を全てもとめよ

上記の問題を考えているのですが,スレーター行列式に代入するとどちらも波動関数が0になって解が求まりません。
どのようにとけば2電子波動関数を求められますか?

Aベストアンサー

#4の補足について。

OKです。

Q∫Kπ~K+1π|sint|dt=|∫Kπ~K+1πsintdt|

∫Kπ~K+1π|sint|dt=|∫Kπ~K+1πsintdt|
は、なぜいえるのですか?

解説では、Kπ~K+1πにおいてsintの符号が一致するため・・・
と書いてあるのですが、いまいちよくわかりません。

Aベストアンサー

たぶんこの問題には、Kは整数とする、または自然数とする、と書いてあると思います。さらに、K+1にはカッコが付いているはずです。

このとき、Kが自然数の時積分範囲は単位円の上半分または下半分となります。Kが偶数のときは上半分で、奇数の時は下半分になります。実際に積分してみましょう。
Kが偶数のとき、sintをこの範囲で積分すると、答えは2になります。|sint|を積分しても、2になります。
Kが奇数のとき、sintをこの範囲で積分すると、答えは―2になります。その絶対値は2となります。|sint|をせきぶんすると、2になります。
ちゃんと一致していますね。と言ってもわかりにくいと思うので、成り立たない場合を考えます。

sintをπ/2~3π/2の範囲で積分します。そうすると答えはゼロになります。|sint|を同じ範囲で積分すると、答えは2になります。

グラフを書いてみましょう。関数を積分するということは積分範囲とx軸と関数によって囲まれた面積を求めることと一致します。ただしこれは、積分範囲において関数が正の場合の話で、関数が負の値を取っている範囲ではマイナスが付きます。つまり、グラフをかいて、x軸よりも上にある、x軸と関数によって囲まれた図形の面積をすべて足して、x軸よりも下にある、x軸と関数によって囲まれた図形の面積を引くと、積分した値になるのです。グラフを書いてみると、積分範囲において、sinxの値が常に正、または負の場合、∫|sinx|dx=|∫sinx dx|が成り立つことがわかります。

たぶんこの問題には、Kは整数とする、または自然数とする、と書いてあると思います。さらに、K+1にはカッコが付いているはずです。

このとき、Kが自然数の時積分範囲は単位円の上半分または下半分となります。Kが偶数のときは上半分で、奇数の時は下半分になります。実際に積分してみましょう。
Kが偶数のとき、sintをこの範囲で積分すると、答えは2になります。|sint|を積分しても、2になります。
Kが奇数のとき、sintをこの範囲で積分すると、答えは―2になります。その絶対値は2となります。...続きを読む

Q波動関数の状態ベクトルについて

波動関数は|ψ>だと理解していたのですが,ある教科書で波動関数ψ(r,t)は
ψ(r,t)=<r|ψ)
とされていました.

波動関数|ψ>は,無限個の波動関数の重ねあわせだと思うのですが(←正しいでしょうか?),
なぜ位置rとの内積が波動関数となるのがよくわかりません.
ご教授お願いいたします.

Aベストアンサー

ディラックやランダウ・リフシッツの教科書に載っていると思います.詳しくはそのような本で調べましょう.

位置演算子qの固有値rとそれに属する固有関数|r>にはq|r>=r|r>が成り立ちます.|r>によって状態ketベクトル|ψ>を展開すると

|ψ>=∫ψ(r',t)|r'>dr'

となります.ψ(r',t)は展開係数(重み)です.これとbraベクトル<r|の内積をとると,規格化直交性<r|r'>=δ(r-r')により,

<r|ψ>=∫ψ(r',t)<r|r'>dr'=∫ψ(r',t)δ(r-r')dr'=ψ(r,t)

これが問題の式です.

つまり,波動関数(シュレディンガー方程式の解)とは状態ベクトルを位置演算子の固有関数で展開したときの展開係数なのです.

量子力学は無限次元線形代数です.有限次元線形代数はすでによく学んでいると思います.だいたい,そこでの内容を当てはめて考えれば理解しやすいと思います.

質問者様のような疑問が生じるのは,ほとんどの初等的な教科書はシュレディンガー流に書かれているからです.ハイゼンベルクの行列力学を直接学んでいる人は少ないと思います.ハイゼンベルク流の量子力学,ディラックの量子力学を学んではじめてこの手の疑問はすっきりとするでしょう.そのためには冒頭に挙げたような教科書に進まなければなりません.

ディラックやランダウ・リフシッツの教科書に載っていると思います.詳しくはそのような本で調べましょう.

位置演算子qの固有値rとそれに属する固有関数|r>にはq|r>=r|r>が成り立ちます.|r>によって状態ketベクトル|ψ>を展開すると

|ψ>=∫ψ(r',t)|r'>dr'

となります.ψ(r',t)は展開係数(重み)です.これとbraベクトル<r|の内積をとると,規格化直交性<r|r'>=δ(r-r')により,

<r|ψ>=∫ψ(r',t)<r|r'>dr'=∫ψ(r',t)δ(r-r')dr'=ψ(r,t)

これが問題の式です.

つまり,波動関数(シュレディンガー方程式の解)...続きを読む

Q物理学ですこの問題の考え方が分かりません 答えはR=√(R0^2+X0^2)です お願いします

物理学ですこの問題の考え方が分かりません
答えはR=√(R0^2+X0^2)です
お願いします

Aベストアンサー

電力Pは

P=|I|^2・R=(E^2)R/{(R0+R)^2+X0^2}

PをRで微分すると

dP/dR=E^2(R0^2+X0^2-R^2)/{(R0+R)^2+X0^2}^2

従って、Pの最大値は dP/dRの分子が0になるところなので

R0^2+X0^2-R^2=0 → R=√(R0^2+X0^2)

Q光は波動関数を持たないのですか?

http://oshiete1.goo.ne.jp/qa5021911.html


ここの質問で物質波の波動関数はスカラーであり、縦波も横波も持たないと教えて頂いたのですが、
では光の場合はどうなのでしょうか?

光は横波しかもたないわけですが、光の波を光の波動関数であると考えるとスカラーではないのはなぜなのでしょうか?
或いは光の波が波動関数ではないのだとすると、光が波動関数を持たないのはなぜなのでしょうか?

それと出来れば光が縦波を持たず、横波しか持たない理由を教えて下さい。

よろしくお願い致します。

Aベストアンサー

こんばんは。

次第に話が難しくなってきましたね。

光は物質波ではありません。物質のシュレディンガー方程式に相当するものが、電磁場の場合は、ベクトルポテンシャルAの従う、波動方程式です。でもこれだけでは、よくわかりませんね。しかも、光子の粒子性がまだ見えてきません。そこでAをフーリエ変換するのです。すると、変換の各項の係数が調和振動子の振る舞いに類似していることが分かります。調和振動子は容易に第二量子化ます。それと同じように電磁場を量子化すればよいのです。今述べたことを振り返ってみると、電磁場は一回しか量子化しなかったのに第二量子化が得られたということになります。したがって、ベクトルポテンシャルAは、シュレディンガー方程式の波動関数ψに相当するということが言えそうです。Aはスカラーではなく、ベクトルですよね。このことが普通の物質波との大きな違いです。

真空中を伝わる光が縦波を持たず、横波しか持たない理由(誘電体中では縦波の成分をもつこともあります)マクスウェルの方程式から直接導かれる性質です。

それではまた。

Q物理です x^2+y^2<=1 x>=0 y>=0で与えられる重心を 求める問題で重心のx座標を

物理です
x^2+y^2<=1 x>=0 y>=0で与えられる重心を
求める問題で重心のx座標を
1/S∮(0→1)x√1-x^2となっているのですが
なぜこうなるのかがよく分かりません
解説お願いします

Aベストアンサー

重心は、任意の点の周りのモーメントを考えたときに、「微小部分の重量のモーメントの総和=全重量が重心位置にある場合のモーメント」となる点です。

 与えられたのは、半径 1 の 1/4 円の扇型です。その「微小部分」を、x座標を x ~ x+dx の「縦割り」部分にすると、面積は「高さ」が √(1 - x) 、幅が dx ですから
 ΔS = √(1 - x)*dx
です。
 この部分原点回りのモーメントの「腕の長さ」は x ですから、物理的な「力」を考えるために密度を ρ として、モーメントは
  ρ*xΔS = ρ*x√(1 - x)*dx
です。従って、「微小部分の重量のモーメントの総和」は
  ∫[0~1] ρ*x√(1 - x) dx    (1)
です。

 これに対して、「全重量が重心位置にある場合のモーメント」は、重心の x 座標を x0 とすると
  ρ*S*x0     (2)

(1)と(2)が等しくなるので
  ρ*S*x0 = ∫[0~1] ρ*x√(1 - x) dx

 従って
  x0 = (1/S)∫[0~1] x√(1 - x) dx

 S は 1/4 円なので
   S=(1/4)パイr^2 = パイ/4
ですね。

重心は、任意の点の周りのモーメントを考えたときに、「微小部分の重量のモーメントの総和=全重量が重心位置にある場合のモーメント」となる点です。

 与えられたのは、半径 1 の 1/4 円の扇型です。その「微小部分」を、x座標を x ~ x+dx の「縦割り」部分にすると、面積は「高さ」が √(1 - x) 、幅が dx ですから
 ΔS = √(1 - x)*dx
です。
 この部分原点回りのモーメントの「腕の長さ」は x ですから、物理的な「力」を考えるために密度を ρ として、モーメントは
  ρ*xΔS = ρ*x√(1 - x)*dx
です。従っ...続きを読む

Q波動関数の絶対値の2乗について

波動関数の絶対値の2乗は確率密度と習ったのですが、ピンときません、なぜ、波動関数の絶対値の2乗は確率密度といえるのでしょうか?
回答よろしくお願いします。

Aベストアンサー

1粒子の波動関数であれば, 「波動関数の絶対値の2乗」を全空間で積分すると 1 ですね.

Q波動関数の2乗 |ψ|^2 の次元

波動関数の2乗 |ψ|^2
の次元は無次元で良いのでしょうか?
ある区間内に粒子の見つかる確率を表しているのは分かるのですが。
どうでしょうか?

Aベストアンサー

確率が無次元です。|ψ|^2になにを掛けると確率に
なりますか?それがヒントです。だから空間の次元数
によります。

Q摂動論を用いた波動関数

電荷eを持つ一次元の粒子について
Ho=p^2/2μ+μ^2x^2/2のハミルトニアンを考えます。電場によるポテンシャルはH1=eV=eεzです。
これの基底状態のエネルギーと波動関数を摂動論を用いて一次まで求めるのですが、エネルギーはなんとか求めることができました。さて波動関数についてですが、参考書をみると係数の求め方は乗っているのですが、係数がかかる波動関数の求め方がわからず困っています。ぜひ教えてください> <よろしくお願いします。

Aベストアンサー

>波動関数についてですが、参考書をみると係数の求め方は乗っているのですが、係数がかかる波動関数の求め方がわからず困っています。

摂動論で使う波動関数は無摂動ハミルトニアンの固有関数で展開(適当な係数を掛けて)していますから、参考書には無摂動系での固有関数(波動関数)がでているはずと思いますが。
尚、ご質問の問題はStark効果を扱った問題と思います。これは大抵の量子力学の演習書に載っていると思いますので、一度図書館で調べられればいかがでしょうか。

QV=V0+at → X=V0t+1/2at^2 ?

タイトルの前者の単位は〔m/s〕ですよね
で、後者の単位は〔m〕ですよね

僕は、〔m/s〕を〔m〕に直したいなら〔s〕をかければいいと思ったので
t(V0+at)をしました
けれどそれだと、後者の式の"1/2"が抜けてしまいます
一体この"1/2"がどこから出てきたのかが疑問です

学校の先生に質問しても、積分がどうとやらといっていてよくわかりませんでした

v-tグラフの面積を利用して出すときは、加速度が斜めで出てくるから
三角形の公式を利用したときに"1/2"を使うということは分かりました
けれど、こうして式で考えようとすると、なぜ1/2が出てくるのかよくわかりません
単純にtをかけるだけではダメなのでしょうか

どなたか分かる方いたら解説お願いします

Aベストアンサー

時刻"0"から"t"までのt秒間に進んだ距離を考える場合、その中間時刻"t/2"の時の速度で"t"秒間進んだ、と考えましょう。
時刻"0"の時の速度でt秒とか、時刻"t"の時の速度でt秒よりも正しそうな気がしませんか?

時刻"t/2"の時の速度はV0+a(t/2)=V0+(1/2)atです。この速度でt秒なら
{V0+(1/2)at}t=V0t+(1/2)at^2
となります。

これは等加速度運動の場合だから成り立つのであり、常に成り立つわけではありません。
ただ、t秒間での移動距離=t秒間での平均速度 × t は必ず成り立ちます。


人気Q&Aランキング

おすすめ情報