三角形OABの辺OA,OB上にそれぞれ点C,DをとりADとBCの交点をPとする。また、2点Q,Rを四角形OARBがそれぞれ平行四角形となるようにとる、このとき3点P,Q,Rは一直線になることを示せという問題がわかりません、
一直線を示す問題はPQ=kPRみたいな感じでやることは知ってるんですが教えて下さい。

このQ&Aに関連する最新のQ&A

UD とは」に関するQ&A: 「UD」とは?

A 回答 (2件)

この問題文は条件が不足のため、解けません。



勝手に問題を作りますが:
>また、2点Q,Rを四角形OARBがそれぞれ平行四角形となるようにとる

この部分が、つぎの文だったら、(1)~(6)のように解けます。
《また、2点Q,Rを四角形OARBと四角形OCQDがそれぞれ平行四辺形となるようにとる》

(1)Pを通りOAに平行な直線を引き、CQとの交点をS, OBとの交点をUとする。
(2)ADとCQの交点をTとする。
(3)△UPBと△SPCは相似、△UPDと△SPTは相似だからUD:DB=ST:TC
(4)△PTSと△ATCは相似だから、ST:TC=PS:CA
(5)↑PQ = ↑UD + ↑PS が成り立つ。(↑は本当は上につける→で、ベクトルを表わす)
(6)↑QR = ↑DB + ↑CA が成り立つ。

(3)~(6)から、P,Q,Rが一直線上にあることは簡単に示せます。
    • good
    • 0

ん?僕の理解力が足りないのかな??



Qの場所がどこなのかが わかりませんが?
ついでに 平行四辺形ですね。
    • good
    • 0

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q四角形対角線交差角度

四角形ABCDの対辺長さ(AB,CD)とその対角線長さ(AD,BC)
がわかっているときその対角線の交差する角度を計算する方法を教えてください。

Aベストアンサー

No.1です。

ANo.1の補足の訂正をした場合

辺AB,CD,対角線AC,BDが指定された四角形ABCDについて

条件を満たす四角形ABCDを作図して添付します。
ABを基準に、半径は対角線AC,対角線BDの円弧1、円弧2を描くと、C,Dはそれぞれの円弧上に存在します。Dを円弧2上に1つ定めて、半径が対角線CDに等しい円弧3を描き、円弧1との交点をCとします。
Dは円弧2上に存在するので先のDとは異なる位置のD'に取れます。このD’から前と同様にして円弧1との交点C'を作図できます。それぞれの対角線の交点をP,P'とします。
すなわち、四角形ABCDと四角形ABC'D'は共に条件を満たす四角形ですが
対角線のなす角は常に∠APB=∠AP'Bとはなりません。

つまり、四角形ABCDの形状は一意に確定しません(異なる形状の四角形ABCDが何通りも作図できます。)
条件を満たす四角形ABCDの対角線の交点をPに対して、∠APB≠一定です。
つまり、条件を満たす異なる四角形ABCDについて対角線の交点Pは、同じ円弧上にない(円周角∠APBが同じではない)ので、∠APBは一定ではない。つまり∠APBは辺AB,BC,対角線AC,BDだけでは求まらないということです。

No.1です。

ANo.1の補足の訂正をした場合

辺AB,CD,対角線AC,BDが指定された四角形ABCDについて

条件を満たす四角形ABCDを作図して添付します。
ABを基準に、半径は対角線AC,対角線BDの円弧1、円弧2を描くと、C,Dはそれぞれの円弧上に存在します。Dを円弧2上に1つ定めて、半径が対角線CDに等しい円弧3を描き、円弧1との交点をCとします。
Dは円弧2上に存在するので先のDとは異なる位置のD'に取れます。このD’から前と同様にして円弧1との交点C'を作図できます。それぞれの対角線の交点をP,P'とします。
すなわ...続きを読む

Qgcd(p,q)=1,∃a,b∈G;#G=pq,#=p,#=qならばGは巡回群

gcd(p,q)=1とする。(G,・)を位数pq(つまり#G=pq)のアーベル群とせよ。
aの位数がp,bの位数がq(つまり#<a>=p,#<b>=q)であるような元a,b∈Gが存在する時,
(G,・)は巡回群である事(つまり,∃g∈G;<g>=G)を示せ。
また,このような群Gの例を挙げよ。

という問題はどのようにして示せばいいか分かりません。

是非,ご教示ください。m(_ _)m

Aベストアンサー

問題の条件においてGの元abの位数を考えてみましょう。
また例の方はp=2,q=3などとすればすぐに挙げられるでしょう。

Q四角形で面積が2倍だと対角線は何倍でしょうか。

軽い質問ですみません。
四角形で面積2倍だと対角線は何倍になるのでしょうか
あと、正四角形と長方形でも同じでしょうか。
計算式にすると割と難しくなるような気がしますけど
できれば式も教えていただけたらとおもいます。
よろしくおねがいします。

Aベストアンサー

ルート(√)の計算を知っているという前提で話をします。

まず、正四角形(正方形)で考えてみます。
・1辺の長さが1の正方形は面積も1(=1×1)になります。
・1辺の長さが√2の正方形は面積が2(=√2×√2)
辺の長さは、√2倍になるということです。
正方形は、相似形(同じ形)をしているので、
大きさが変わっても面積が2倍になれば、辺の長さも対角線の長さも√2倍になります。

次に普通の四角形を考えます。
考えている四角形を非常に小さな正方形で分割することを考えます。
それぞれの正方形の1辺(対角線)を√2倍にすると、それぞれの面積は2倍となります。
結果、全体である四角形も面積は2倍になります。

QQ(p+q, pq)の動く範囲で,y≧0の条件?

ご教示お願いします。

問題:座標平面上の点 ( p, q )は x^2 + y^2 ≦8, y ≧ 0 で表される領域を動く。
点Q (p+q, pq )の動く範囲を図示せよ。

この解答で,X = p+q, Y = pq とおいて,XとYの関係式
X^2 - 2 Y ≦ 8 ・・・・・・(1)
を作り,かつ,
t^2 - Xt + Y =0 ・・・・・・(2)
が実数解を持つことから,この判別式
D = X^2 - 4 Y ≧ 0 ・・・・・・ (3)
までは考えたのですが,
問題にある“ y ≧ 0” をどのように反映させてよいかがわかりません。

よろしくお願いいたします。

Aベストアンサー

No.1の補足についてですが

(p,q)=(x,y)だと固定する必要はありません。
x+yもxyも対称式なので入れ替えてもいいのです。

(p,q)=(0,-1)だとして(2)の解は(x,y)=(1,-1),(-1,1)が存在するわけですが
Qの領域としては(x,y)=(-1,1)がy>=0の領域に含まれるために
対応する(p,q)=(0,-1)は、y>=0という領域からの像に含まれていることが分かります
p-q平面の各点は2つのx-y平面の各点が(二つの解がある範囲で)二つずつ対応するのだと思います

2次式t^2-Xt+Y=0が(0を含む)正の解を持つ条件は
1)t=0のときの2次式の値0^2-0*X+Y=Y<=0(正と負の解の場合)
2)軸が正でt=0のときの2次式の値0^2-0*X+Y=Y>=0(正の解二つの場合)
となります

Q四角形の対角線の角度の求め方を教えてくださ。

四角形ABCDのAB,BC,CD.DAの長さ及び対角線AC,BDが分かる場合の対角線の交わる角度を教えてください。簡単なようですが分かりません。

Aベストアンサー

対角線の交点をEとすると対角線の交わる角度は
∠BEC=∠AED=x, ∠AEB=∠CED=yです。
ここで x+y=π(=180°)です。

x=π-∠EBC-∠ECB
cos(x)=-cos(∠EBC+∠ECB)=sin(∠EBC)sin(∠ECB)-cos(∠EBC)cos(∠ECB) ...(※)
余弦定理より
cos(∠EBC)=cos(∠DBC)=(BC^2+BD^2-CD^2)/(2BC*BD)
cos(∠ECB)=cos(∠ACB)=(BC^2+AC^2-AB^2)/(2BC*AC)
sin(∠EBC)=√{1-(cos(∠EBC))^2}=√{4(BC*BD)^2-(BC^2+BD^2-CD^2)^2}/(2BC*BD)
sin(∠ECB)=√{1-(cos(∠ECB))^2}=√{4(BC*AC)^2-(BC^2+AC^2-AB^2)^2}/(2BC*AC)
この4つの三角関数を(※)に代入して arccosをとれば角度x[ラジアン]が求まります。
対角線の角度xの単位はラジアンですが、度数法にするには「180/π」をかけてやれば 度(°)の単位に変換できます。
もう1つの補角の角度yなら y=π-x[ラジアン]で求まります。度(°)単位であれば「180/π」を掛ければ変換できます。

対角線の交点をEとすると対角線の交わる角度は
∠BEC=∠AED=x, ∠AEB=∠CED=yです。
ここで x+y=π(=180°)です。

x=π-∠EBC-∠ECB
cos(x)=-cos(∠EBC+∠ECB)=sin(∠EBC)sin(∠ECB)-cos(∠EBC)cos(∠ECB) ...(※)
余弦定理より
cos(∠EBC)=cos(∠DBC)=(BC^2+BD^2-CD^2)/(2BC*BD)
cos(∠ECB)=cos(∠ACB)=(BC^2+AC^2-AB^2)/(2BC*AC)
sin(∠EBC)=√{1-(cos(∠EBC))^2}=√{4(BC*BD)^2-(BC^2+BD^2-CD^2)^2}/(2BC*BD)
sin(∠ECB)=√{1-(cos(∠ECB))^2}=√{4(BC*AC)^2-(BC^2+AC^2-AB^2)^2}/(2BC*AC)
この4つの三角関数を(※)に代入して arccos...続きを読む

Q2点A(3,1)、B(2,6)と原点Oを頂点とする三角形OABを考える

2点A(3,1)、B(2,6)と原点Oを頂点とする三角形OABを考える。
この時、角AOBの外角を2等分する直線の方程式を求めよ。

という問題なのですが、解説によると、

「角AOBの外角を二等分することは、2辺の長さの比に外分することだから、辺ABを1:2に外分する」

とありました。どうして、外角を2等分したら、2辺の長さの比に外分することになるのですか?

Aベストアンサー

そのものズバリなページがありました。
内角の2等分線と同様に証明できるようです。
http://kurihara.sansu.org/theory/kaku2bun2.html

Q四角形ABCDで、AD、BCの中点をそれぞれP、Qとし、また対角線AC、BDの中点をそれぞれR、Sと

四角形ABCDで、AD、BCの中点をそれぞれP、Qとし、また対角線AC、BDの中点をそれぞれR、Sとするとき、四角形PSQRは平行四辺形になることを証明せよ。

Aベストアンサー

たぶん、中学の幾何の問題ですよね?

△ACDにおいてRP//CDかつRP=1/2CD(中点連結定理)……①
△BCDにおいてQS//CDかつQS=1/2CD(中点連結定理)……②
①、②よりQS//RPかつQS=RP……③
③より向かい合う2辺が平行で長さが等しいので、四角形PSQRは平行四辺形であると分かります。
(証明終わり)

No.2の方が、四角形PSQRの向かい合う2組の辺が平行であることを指摘していらしたので、こちらは別解として向かい合う1組の辺が平行で長さが等しいことからの証明にしてみました。

Q座標平面状にO(0,0)A(1,0)を取る。この平面上の2点P,Qを条

座標平面状にO(0,0)A(1,0)を取る。この平面上の2点P,Qを条件

(a)OP=1、∠AQP≦90°

(b)PQ=1,∠OPQ≧90°

を満たすように動かす。ただし角の大きさは0°から180°までの範囲で測るものとする。

<問>点Qの動く領域を求め、図示せよ。


この問題がわかりません。できるだけやさしくご教授ください。

Aベストアンサー

良くある問題なんで、方針だけ。

∠AQP=α、∠OPQ=βとし、Q(x、y)とすると、xとyはベクトルと三角関数を使うと、αとβであらわせる。
もちろん一気にQは求められないから、先ずPをαとβで求めてからだが。

そこで、0<α≦90°、180°≧β≧90°の範囲で、xとyの動きうる領域を定めるだけ。
それを求めるのは、ちょっと考えるかな。
αとβが同時に動くし、しかも、動く角度の範囲が異なるから。

Q4辺の長さが分かっている四角形の対角線の長さを求める方法

4辺の長さが分かっている四角形の対角線の長さを求める方法があれば
教えてください!

たとえば
四角形ABCDの
AB = 4 BC = 5 CD = 7 DE = 6
といった感じで全て判っている場合、
辺AC 、辺BDの長さを求める場合どうすればいいのでしょうか。

公式とかも存在するのであれば教えていただきたいです!

Aベストアンサー

4辺の長さだけでは四角形の形は一つに決まりません。
上下の閉じていない段ボールの箱を潰すように、4辺の長さだけしか与えられていない四角形は潰すことが出来るのですよ。
潰していけば当然対角線の長さも変わるでしょう。だから4辺の長さだけから対角線の長さを決めることは出来ないのです。

四角形の形や対角線の長さが一つに決まるためには、少なくとも一つの角の大きさか一つの対角線の長さを与える必要があります。

QP(0), P(1),P(2),・・・, P(n)が整数ならば、全ての整数kに対してP(k)は整数

『nを自然数, P(x)をn次の多項式とする。P(0), P(1),P(2),・・・, P(n)が整数ならば、全ての整数kに対してP(k)は整数であることを証明せよ。』

数学的帰納法で解けるらしいのですが、分かりません。どなたか教えてください。

Aベストアンサー

別に帰納法でなくても証明可能だ。
いったん証明を書いてしまったが、削除。途中まで記載。

多項式全体の成す環を R[x] としよう(面倒なので R は実数体)
R[x] の R 上のベクトル空間としての基底を下記のように取る

P_0 = 1, P_1 = x, P_2 = x(x-1), P_3 = x(x-1)(x-2), ...

以下略


人気Q&Aランキング