
A 回答 (8件)
- 最新から表示
- 回答順に表示
No.7
- 回答日時:
古式ゆかしい方法は次の通り.
k を正の (大きな) 整数とすると ε = 2^-k は 0 に近い. 従って任意の正の実数 x に対して (x^ε-1)/(10^ε-1) は x の常用対数 (の近似値) となる.
最初の常用対数表はこんな感じで作ったらしいよ. k を一定にすれば分母は定数だから, 1回計算しておけばそれですむ.
No.6
- 回答日時:
関数電卓ではなく普通の電卓を使うという話?
y = (x-1)/(x+1)
logx = 2{y + y^3/3 + y^5/5 + ・・・}
だと割と収束速いし、収束半径無いから使いやすい。
x = 10 だと収束遅いけど
log(10)=3log(2) + log(1.25)
とか工夫すればいいと思う。
log_10(2) = log(2)/log(10)
で計算できます。
No.5
- 回答日時:
[1] 以下、常用対数(底が10の対数)をlog、自然対数(底がe=2.7182818...の対数)をlnと書くことにしますと、
log(x) = ln(x) / ln(10)
だから問題はln(x)とln(10)の計算です。(ご質問ではx=2)
[2] 0<x≦2について
ln(x) = (x-1) - ((x-1)^2)/2 + ((x-1)^3)/3 - .....
です。ただしxが1に近い方が速く収束する。例えばx=2でこの計算をやると300個ほどの項を足し算引き算してようやく有効数字2桁が決まるという大変な計算になっちゃいますが、x=9/8やx=11/10だと6個の項、x=5/4でも13個の項で有効数字6桁に達します。
[3] (ご質問のように)xが1よりだいぶ大きい場合には、1<A≦2 である適当な数 A(例えばA=11/10とかA=5/4とか)と自然数nを使って
ln(x) = ln(x/(A^n)) + n ln(A)
によって x/(A^n) が1に近くなるようにできるから、[2]でln(x/(A^n))が計算できます。もちろんln(A)も[2]で計算する。これでln(2)が少ない項数で計算できます。
[4] ひとたび ln(2)を計算しておけば
ln(x) = ln(x/(2^m)) + m ln(2)
によって[3]のnが過大にならないようにできる。A=5/4でln(A)の計算をやっておくと、ln(10)が
ln(10) = ln(10/(2^3)) + 3ln(2) = ln(A) + 3ln(2)
で計算できますね。
[5] ひとたび ln(10)を計算しておけば、もちろん
ln(x) = ln(x/(10^m)) + m ln(10)
これでどんなxが来ても大丈夫。
という仕掛け。ですから
> 10の0.1乗とか
は計算しないで済む。
ちなみに10^0.1の計算は
10^0.1 = e^(0.1 ln(10))
を使って、
e^x = 1 + x + (x^2)/2! +(x^3)/3! + .... (x=0.1 ln(10) )
で計算する。x≒0の時にうんと速く収束します。
No.4
- 回答日時:
0.1乗の意味については...
x = 10^0.1 の両辺を 10乗すると
x^10 = 10^1 になる。
log_10 2 ≒ 0.301 ⇔ 10^0.301 ≒ 2 も、
同様に 10^301 ≒ 2^1000 で考えれば
自然数乗(つまり掛け算)として理解できる。
log_10 2 の近似値を求めるには、
2^p の p を大きくしていって値が 10^q に近いものを探し
10^q ≒ 2^p ⇔ log_10 2 ≒ q/p とすればいい。
ただし 2^p の桁数が多くなると、計算機にやらせるとしても
計算するのも途中結果を覚えておくことさえ大変になるので、
実際には下記のようにやる。というか、歴史的にそうやっていた。
10^(1/m) = 1 + a, y^(1/m)= 1 + b と置いて
m を十分大きくすれば、 a, b は正値で 0 に近づく。
a が小さくなれば、x = log_10 y に対して
(1 + b) = (1 + a)^x ≒ 1 + ax より x ≒ b/a となる。
平方根の計算(開平法)ができれば、
m = 2^k の k をどんどん大きくできるので
log_10 y の近似値を求めることができる。
No.3
- 回答日時:
2^3=8<10<16=2^4
∴
1/4<log_10(2)<1/3
2^3=8<10<16=2^4
↓各辺を2乗すると
2^6=64<100<2^8
2^6=64<100<128=2^7
10^2<2^7
10^(2/7)<2
∴
2/7<log_10(2)
2/7<log_10(2)<1/3
2^3=8<10<16=2^4
↓各辺を3乗すると
2^9=64*8<10^3<2^12
2^9=512<10^3<1024=2^10
10^3<2^10
10^(3/10)<2
∴
3/10<log_10(2)
0.3=3/10<log_10(2)<1/3<0.4
∴
log_10(2)の小数第1位は3である
No.2
- 回答日時:
2^3<10<16=2^4
2^3<10<2^4
2^3<10
2<10^(1/3)
10<2^4
10^(1/4)<2
10^(1/4)<2<10^(1/3)
∴
1/4<log_10(2)<1/3
No.1
- 回答日時:
一生懸命筆算で近似計算をしても何の役にも立たないので(応用が利かない)、さっさと電卓で計算してください。
今は、スマホのアプリでもWebでも自由に使える「関数電卓」が存在します。
「計算方法を編み出すのが趣味」ということでもなければ、実用的には「f電卓を使えばよい」ということです。
日本では、中学や高校の授業では「それ以上は表せない」ものとして「平方根」や「三角関数」「対数」「指数」をそのまま残して「答」とすることが多いですが、欧米特にアメリカでは「きちんと小数にする」(近似でよいので)ところまで教えることが多いようです。
「log[10](2)」という答えで分かったつもりになるか、「それってどのぐらいの大きさか(約0.3)」まで知らないと実用上分かったことにはならない、という考え方の違いがあるようです。
なので日本の教育では『電卓を使う』ことは教えませんが、アメリカの教育では電卓が必須のようです。
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
似たような質問が見つかりました
- 化学 【 化基 相対質量 】 相対質量を求めるときに、指数がーになっている数の割り算をするのですが、どうす 2 2022/09/14 20:35
- 数学 極限の計算をお願いします。 {log(2x+3)}/{log(3x+1)} のx→∞の極限値の求め方 3 2022/08/03 20:58
- 経済学 「政府支出乗算」の求め方を教えてください。 2 2022/11/20 19:52
- 化学 化学が得意な方に質問です。この問題の正解を教えて欲しいです。 【問題1】Log Kowの記述について 1 2022/09/26 23:44
- 統計学 t検定について教えてください 2 2023/02/23 16:35
- 計算機科学 アルゴリズムについて 1 2023/01/01 19:43
- 数学 数学Aの確率と場合の勉強の仕方を教えてください。 高校1年です。明日数Aの期末テストがあります。です 5 2022/07/04 18:03
- 数学 虚数単位:i、この4乗根を求める解答したものの疑問です。 1 2022/10/25 00:43
- 統計学 確率統計の問題です。 3 2022/04/07 04:39
- C言語・C++・C# C言語 3 2022/10/04 15:07
このQ&Aを見た人はこんなQ&Aも見ています
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・昔のあなたへのアドバイス
- ・字面がカッコいい英単語
- ・許せない心理テスト
- ・歩いた自慢大会
- ・「I love you」 をかっこよく翻訳してみてください
- ・ゆるやかでぃべーと タイムマシンを破壊すべきか。
- ・はじめての旅行はどこに行きましたか?
- ・準・究極の選択
- ・この人頭いいなと思ったエピソード
- ・「それ、メッセージ花火でわざわざ伝えること?」
- ・ゆるやかでぃべーと すべての高校生はアルバイトをするべきだ。
- ・【お題】甲子園での思い出の残し方
- ・【お題】動物のキャッチフレーズ
- ・人生で一番思い出に残ってる靴
- ・これ何て呼びますか Part2
- ・スタッフと宿泊客が全員斜め上を行くホテルのレビュー
- ・あなたが好きな本屋さんを教えてください
- ・かっこよく答えてください!!
- ・一回も披露したことのない豆知識
- ・ショボ短歌会
- ・いちばん失敗した人決定戦
- ・性格悪い人が優勝
- ・最速怪談選手権
- ・限定しりとり
- ・性格いい人が優勝
- ・これ何て呼びますか
- ・チョコミントアイス
- ・単二電池
- ・初めて自分の家と他人の家が違う、と意識した時
- ・「これはヤバかったな」という遅刻エピソード
- ・ゴリラ向け動画サイト「ウホウホ動画」にありがちなこと
- ・泣きながら食べたご飯の思い出
- ・一番好きなみそ汁の具材は?
- ・人生で一番お金がなかったとき
- ・カラオケの鉄板ソング
- ・自分用のお土産
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
らせんRの計算の仕方
-
角度を調べる計算方法を教えて...
-
[関数]同じ品番で一番下の数値...
-
2次関数って何の仕事で必要な...
-
円周率(π)って確定値のない「...
-
1512の1/5乗
-
統計解析のクロスバリデーショ...
-
円周率の計算式って何ですか?
-
計算の方法を教えてください。 ...
-
値引きの計算
-
10^0.2 = 1.58489319246111の計...
-
3割の計算
-
出来高の計算
-
数学ができる貴方はどのような...
-
「再帰的」の意味を教えてください
-
電力ケーブルのインピーダンス...
-
信頼区間90%は何σ?
-
指数計算を教えてください
-
倍率とデシベルの計算式
-
テイラー展開と関数値の求め方
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
おすすめ情報