前回、「1-1+1-1+…=?」に対して様々なご意見をいただき、それに””勇気””付けられまして、新たに疑問というか考えを提示させていただきます。
S₁=1-1+1-1+…とし、また、S₂=1-2+3-4+5-6+…、S₃=1+2+3+4+…とします。御存知の方も多いと思いますが、S₂、S₃はS₁を使って表せるというか表せる場合があります(あくまで直観的な方法ですが)。
S₂+S₂=2S₂=(1-2+3-4+5-6+…)+(1-2+3-4+5-6+…)=1+(-2+1)+(3-2)+(-4+3)+…=1-1+1-1+…=S₁からS₂=S₁/2
S₃-S₂=(1+2+3+4+5+6+…)-(1-2+3-4+5-6+…)=(1-1)+(2-(-2))+(3-3)+(4-(-4))+…
=4+8+12+…=4(1+2+3+…)=4S₃から、S₃=-S₂/3=-S₁/6
そして、前回のS₁の計算順序を適当に変更する計算方法を採用した「結果」を用いれば、S₂、S₃ともに、任意の整数や、限定的ではあるが有理数にできることになります。
さらにさらに!もっと自由に計算する方法を採択できる場を許せるなら、S₂やS₃を任意の有理数にすることもできる。
NS₁=(N-M)S₁+MS₁ N,Mは自然数で M<Nかつ2≦M とするとき、(N-M)S₁のS₁をS₁=(1-1)+(1-1)+(1-1)+…=0+0+0+…=0とし、MS₂のS₂をS₂=1+(-1+1)+(-1+1)+…=1とできるなら、形の上では、
NS₁=(N-M)S₁+MS₁=(N-M)・0+M ・1=Mとできて、S₁=M/Nと任意の正の有理数と計算できることになります。また、MS₁のS₁を-1に計算すると、任意の負の有理数にもできます。そうすれば、
S₂=S₁/2、S₃=-S₁/6と表わせるS₂、S₃ともに任意の有理数と計算できることになる。
前回も注意しなければならないこととして、決して、普通にはこのような計算はしてはいけません。無限級数の総和を計算する方法として、各種の総和法が開発されていますが、そのことごとくに当てはまらないし、解析接続性も破りまくっているでしょう。S₁をより”自由に”計算する方法では、一つの計算式の途中で、二つのS₁の値を併用してしまっているし、(N-M)にかかっているS₁を0とするなら、左辺のS₁のNもMにしなければならないではないか、という指摘もあるとは思いますが、そこは目をつぶって、というより、より大きく目を開いて大目に見ることにする、できる場を設けようというのです。というか、できればなあと思うのですが、やはりだめでしょうか?
数学として厳密にするなら、上記のような計算を定義する何らかの数の体系をきちんと設定しなければならないでしょうし、とするなら、そんな体系を設定することは不可能とする意見がほぼ全てでしょう。そもそも、こんなのは数学ではない、というお叱りも受けるでしょうが、それでも、敢えて、このような計算方法を許す場を設けてやることには何某かの意味がある場合があるのではないか?と思えるのです。例えば、数学よりも、物理学の方面で何かと重宝する場面があるのではないでしょうか?それとも、もう使われているかも知れませんね。数学者に知られると怒られるから、そっと目立たないように使っているかも?
A 回答 (4件)
- 最新から表示
- 回答順に表示
No.1
- 回答日時:
ん?
1+2+3+4+... = -1/12
ですよね?
とか書いてみよっか.
https://ja.wikipedia.org/wiki/%E3%83%81%E3%82%A7 …
https://ja.wikipedia.org/wiki/%E3%82%A2%E3%83%BC …
https://ja.wikipedia.org/wiki/%E3%83%9C%E3%83%AC …
No.2
- 回答日時:
交代発散級数の項を並べ替えると、
任意の値へ条件収束する級数を作ることができます。
だから、あなたのその手法で任意の「値」が作れることには、
自由すぎて意味が無い。
なんでもアリは、なにもないのと一緒です。
No.3
- 回答日時:
リーマンの再配列定理について調べればよいでしょう。
例えば
https://mathlandscape.com/cond-conv-rearrangement/
をご覧ください。
あなたは任意の有理数としていますが、どんな実数にも収束させることが可能です。
No.4
- 回答日時:
リーマンのゼータζ関数は
Re(s)>1のとき
ζ(s)=Σ{n=1~∞}1/n^s=1+1/2^s+1/3^s+1/4^s+…
と定義される
が,
解析接続によってs=1を1位の極とし、
それ以外のすべての複素数において正則な有理型関数となる
s=-1のとき
Σ{n=1~∞}1/n^s=1+2+3+4+…
は
発散するけれども
s=-1のとき
解析接続によって得られた関数値は
ζ(-1)=-1/12
となる
-1/12以外の任意の値に収束させることは無意味(ナンセンス)
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
このQ&Aを見た人はこんなQ&Aも見ています
-
フォロワー20万人のアカウントであなたのあるあるを披露してみませんか?
あなたが普段思っている「これまだ誰も言ってなかったけど共感されるだろうな」というあるあるを教えてください
-
フォロワー20万人のアカウントであなたのあるあるを披露してみませんか?
あなたが普段思っている「これまだ誰も言ってなかったけど共感されるだろうな」というあるあるを教えてください
-
映画のエンドロール観る派?観ない派?
映画が終わった後、すぐに席を立って帰る方もちらほら見かけます。皆さんはエンドロールの最後まで観ていきますか?
-
海外旅行から帰ってきたら、まず何を食べる?
帰国して1番食べたくなるもの、食べたくなるだろうなと思うもの、皆さんはありますか?
-
天使と悪魔選手権
悪魔がこんなささやきをしていたら、天使のあなたはなんと言って止めますか?
-
むじゅん 委細な矛盾が生じるなら分数みたいな表記やめれば?って思いませんか?
数学
-
偶数≠奇数の判定はどうやるのか?
数学
-
1-1+1-1+…=?
数学
-
-
4
数学の法則を発見しました
数学
-
5
確率の当たり前
数学
-
6
1/z^2 を z=i の周りで展開しなさい。 この問題が分からないです。また複素関数論のいい教科書
数学
-
7
これなぜせんぶんAB上だったり円弧上のようにわかるのでしょうか。どう考えているのか教えてほしいです。
数学
-
8
数学 算数の通分について 分数を約分するときって 例えば分母が 8と6だったら8×6をして48 だか
数学
-
9
数学I アホらしい質問なのでそんなこと考えることは無駄などの解答は受け付けておりません。 また自分的
数学
-
10
中二数学について質問です。 整数の性質のところで、nを整数とすると2の倍数は2n、3の倍数は3nなど
数学
-
11
確率の問題 数学と実生活と
数学
-
12
下の画像の中の三角形は正方形だ、と友達が言っていたのですが、その根拠のようなものはありますか? 二等
数学
-
13
BINGが間違えた、とっても簡単な算数の問題です、これを見て、どう思われますか。
数学
-
14
以前にも質問させていただいたのですが、理解することができなかったので再度質問させていただきます。 写
数学
-
15
これは証明になってる
数学
-
16
√0.25=±0.5である。 これはなぜ正しく無いのですか?
数学
-
17
整数問題です。
数学
-
18
素数(合成数の並びの最大数)について
数学
-
19
これなぜ最後の不定形が0に収束するとわかるのでしょうか。a,b分かってそれを代入しても不定形になるだ
数学
-
20
ピタゴラスの定理は辺の長さが虚数でも成り立ちますか
数学
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・街中で見かけて「グッときた人」の思い出
- ・「一気に最後まで読んだ」本、教えて下さい!
- ・幼稚園時代「何組」でしたか?
- ・激凹みから立ち直る方法
- ・1つだけ過去を変えられるとしたら?
- ・【あるあるbot連動企画】あるあるbotに投稿したけど採用されなかったあるある募集
- ・【あるあるbot連動企画】フォロワー20万人のアカウントであなたのあるあるを披露してみませんか?
- ・映画のエンドロール観る派?観ない派?
- ・海外旅行から帰ってきたら、まず何を食べる?
- ・誕生日にもらった意外なもの
- ・天使と悪魔選手権
- ・ちょっと先の未来クイズ第2問
- ・【大喜利】【投稿~9/7】 ロボットの住む世界で流行ってる罰ゲームとは?
- ・推しミネラルウォーターはありますか?
- ・都道府県穴埋めゲーム
- ・この人頭いいなと思ったエピソード
- ・準・究極の選択
- ・ゆるやかでぃべーと タイムマシンを破壊すべきか。
- ・歩いた自慢大会
- ・許せない心理テスト
- ・字面がカッコいい英単語
- ・これ何て呼びますか Part2
- ・人生で一番思い出に残ってる靴
- ・ゆるやかでぃべーと すべての高校生はアルバイトをするべきだ。
- ・初めて自分の家と他人の家が違う、と意識した時
- ・単二電池
- ・チョコミントアイス
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
15%増しの計算方法
-
中1です!宿題で数学のレポート...
-
3分2の計算教えて下さい
-
パーセントの計算
-
前年比の%の計算式を教えてく...
-
何通りかの計算で 7C4 の答えが...
-
日にちの計算が解からないらし...
-
6畳間は何立方メートル?
-
ラジアン値を°′″(度・分・秒)...
-
πがついた整数と普通の整数って...
-
エクセルで関数計算後の値を数...
-
3割アップとは、どうのように...
-
一定倍したある数を元に戻すには?
-
毎日10%ずつお金が増える時...
-
教えて下さい
-
指数計算 2^n-1
-
割引の計算を教えてください。
-
Excelの反復計算がわかりません。
-
「出来型」と「出来形」の使い...
-
割引や%引きの計算のやり方を教...
おすすめ情報
上記の計算で、S₁=M/Nで任意の有理数とできるとしましたが、M<Nという条件では|1|より小の有理数となります。それ以外の正の有理数を表すためには、N<Mとし、MS₁のS₁を0としたうえで、
(N-M)S₁のS₁を-1、負の有理数を表すには(N-M)S₁のS₁を+1とすると、全体として任意の有理数を表すとできるでしょう(出来たら色々と面白いと思いますが、S₁の値を一つの式の中でいくつも使ってしまうことになり…ううむ)。
さらに補足です。(N-M)S₁のS₁を…という記述で、|1|より大の有理数を表せるためには、N<|N-M|となる必要があります。
さらにさらに補足。何も(N-M)S₁に拘らなくとも、結局、NS₁=MS₁に持って行って、どちらかのS₁を1としてやれば、場合に応じて、S₁=M/Nもしくは=N/Mにできますね。しかし、そうすると、やはり、一つの等式でS₁の値を左辺と右辺で異ならせていることになるから、数学としては失格となるのか…。何とかできないか?