No.8ベストアンサー
- 回答日時:
> わたしのにほんごがおかしいってことですか??????????
いいや、
https://yomoriki.com/physical-mathematics/47110/
のにほんごがおかしい。
あの文章では、
∫[-∞,∞]f(x)dx = 2∫[0,∞]f(x)dx が成り立つ理由が
積分が広義積分だからだと言ってるように見える。
そうではない!という話は、No.1 に書いた。
No.5
- 回答日時:
f(x)=e^(-ax^2)
が
偶関数だから
∫[-∞,∞]f(x)dx = 2∫[0,∞]f(x)dx
といえる
No.2
- 回答日時:
結論だけ言えば、
> 広義積分には、∫[-∞,∞]f(x)dx = 2∫[0,∞]f(x)dx という性質があります。
は間違い。
例えば、x ≧ 0 のとき f(x) = e^(-x), x < 0 のとき f(x) なる f(x) に対して、
∫[-∞,∞]f(x)dx = 2∫[0,∞]f(x)dx の両辺は広義積分として収束するが
この式のイコールは成り立たない。
ただね...
その引用元の著者が間違えてそんな嘘を書いたのか、
著者は別のことを書いたのだが「ゆゆにゃ」が誤読して
そのように受け取ったのかは、かなり微妙なセンだと思うよ。
過去の質問の内容からしてね。
もうちょっとキリトリを大きくして、前後の文脈を添えて引用すれば、
どちらの人が間違えたのかが判るかもしれない。
このページの一番下にあります
https://yomoriki.com/physical-mathematics/47110/
私の読解力がへんなだけですか????
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
このQ&Aを見た人はこんなQ&Aも見ています
-
ちょっと先の未来クイズ第2問
9月9日(月)に発表される「第3回子どもマネー川柳」に入賞する川柳を考えてこちらに投稿してください。
-
こういう積分って
数学
-
1+2+3+…=?
数学
-
これは証明になってる
数学
-
-
4
n 個のサイコロを同時に振る。 ただし、nは正の整数とする。 出た目の数の積が6の倍数となる確率を求
数学
-
5
ラプラシアンを表すデルタと微小変位を表すデルタが同じなのは理由がありますか?
数学
-
6
数学 なぜn²が4の倍数だとわかるのか
数学
-
7
中二数学について質問です。 整数の性質のところで、nを整数とすると2の倍数は2n、3の倍数は3nなど
数学
-
8
これなぜ最後の不定形が0に収束するとわかるのでしょうか。a,b分かってそれを代入しても不定形になるだ
数学
-
9
なぜ?counterintuitive
数学
-
10
何をもってしていってますか? こうが収束するのと級数が収束するのは違いますが
数学
-
11
難しいのでゆっくりよんでください。
数学
-
12
仕事をクビになり会社の門で憔悴していたらババアがいきなり話しかけてきました。 「この大きい袋に7で割
数学
-
13
a^3+b^3=(a+b)(a^2-ab+b^2)となると思いますが何故こうなるのですか? 理解力低
数学
-
14
数学の問題で 因数分解の問題で、なぜ(x+1)^2が次の{}の中に入った瞬間に2乗ではなくなるのです
数学
-
15
こうなる理由が分かりません
数学
-
16
数学 算数の通分について 分数を約分するときって 例えば分母が 8と6だったら8×6をして48 だか
数学
-
17
なんでですか?
数学
-
18
数学I アホらしい質問なのでそんなこと考えることは無駄などの解答は受け付けておりません。 また自分的
数学
-
19
確率の問題 数学と実生活と
数学
-
20
過去質『すべての自然数とすべての実数を1対1に対応させる方法:ファイナル』について
数学
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・街中で見かけて「グッときた人」の思い出
- ・「一気に最後まで読んだ」本、教えて下さい!
- ・幼稚園時代「何組」でしたか?
- ・激凹みから立ち直る方法
- ・1つだけ過去を変えられるとしたら?
- ・【あるあるbot連動企画】あるあるbotに投稿したけど採用されなかったあるある募集
- ・【あるあるbot連動企画】フォロワー20万人のアカウントであなたのあるあるを披露してみませんか?
- ・映画のエンドロール観る派?観ない派?
- ・海外旅行から帰ってきたら、まず何を食べる?
- ・誕生日にもらった意外なもの
- ・天使と悪魔選手権
- ・ちょっと先の未来クイズ第2問
- ・【大喜利】【投稿~9/7】 ロボットの住む世界で流行ってる罰ゲームとは?
- ・推しミネラルウォーターはありますか?
- ・都道府県穴埋めゲーム
- ・この人頭いいなと思ったエピソード
- ・準・究極の選択
- ・ゆるやかでぃべーと タイムマシンを破壊すべきか。
- ・歩いた自慢大会
- ・許せない心理テスト
- ・字面がカッコいい英単語
- ・これ何て呼びますか Part2
- ・人生で一番思い出に残ってる靴
- ・ゆるやかでぃべーと すべての高校生はアルバイトをするべきだ。
- ・初めて自分の家と他人の家が違う、と意識した時
- ・単二電池
- ・チョコミントアイス
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
-
f(x) g(x) とは?
-
次の等式を満たす関数f(x)を求...
-
数学の f(f(x))とはどういう意...
-
掛け算も足し算も同じ値
-
次の関数の増減を調べよ。 f(x)...
-
微小量とはいったいなんでしょ...
-
差分表現とは何でしょうか? 問...
-
1/(aω+b)の有理化
-
d/dx∫_a^x f(t)dt=f(x)が成り立...
-
微分の公式の導き方
-
複素関数f(z)のテーラー展開や...
-
微分可能なのに導関数が不連続?
-
数学についてです。 任意の3次...
-
極値をとる⇒f'(a)=0の逆の確認
-
【数3 式と曲線】 F(x、y)=0と...
-
"交わる"と"接する"の定義
-
高校レベルの数学で気になるこ...
-
どんな式でも偶関数か奇関数の...
-
高校数学です。y=|x|+1 は奇...
-
z^5=1の虚数解の一つをαと置く...
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
数学の f(f(x))とはどういう意...
-
f(x) g(x) とは?
-
差分表現とは何でしょうか? 問...
-
2つの2次方程式 y=f(x)とy=g(x)...
-
「 f(x)=|x| (-π≦x≦π) を周期的...
-
"交わる"と"接する"の定義
-
三次関数が三重解を持つ条件とは?
-
左上図、左下図、右上図、右下...
-
微小量とはいったいなんでしょ...
-
【数3 式と曲線】 F(x、y)=0と...
-
微分について
-
二次関数 必ず通る点について
-
f(x)=2x+∮(0~1)(x+t)f(t)dt を...
-
数学 定積分の問題です。 関数f...
-
大学への数学(東京出版)に書...
-
eのx乗はeのx乗のまんまなのに...
-
yとf(x)の違いについて
-
数学Ⅱの問題です。 解説お願い...
-
マクローリン展開
-
フーリエ変換できない式ってど...
おすすめ情報
このひとたぶんe^-ax^2
がおもいえかべてるのが
減少関数のきがします。(y軸対称なのに。)