No.3ベストアンサー
- 回答日時:
最初の条件からwをu,vと2実数s,tを使い
w=su+tv
と表すとs<0,t<0となります。
z=pu+qv+rw=(p+sr)u+(q+tr)v s<0,t<0
と変形できます。
質問は任意のs<0,t<0に対して(p+sr,q+tr)がr>0,s>0,t>0を選べば任意の実数の組(a,b)となり得るか、という問題に帰着します。
これは簡単で、
sr<a -> r>a/s
tr<b -> r>b/t
となるrを選べば(このようなrは必ず存在する(例)max(a/s,b/t,0)+1)
p=a-sr>0
q=b-tr>0
とすることができます。
以上のことから任意の複素数zに対してz=pu+qv+rwとしたときp>0,q>0,r>0となる実数p,q,rは必ず存在することが言えます。
No.7
- 回答日時:
[1]z=0の場合はp=q=r=0。
z≠0の場合、Oを端点としZを通る半直線は⊿UVWの辺(か頂点)と交わる。その交点をK(k)とすると
z = ak
となる実数aが存在してa≧0であるのは明らか。で、Kが辺ST (S(s), T(t)はそれぞれU(u), V(v), W(w)のどれか)上にあるとき、
k = bs + (1-b)t
となる実数bが存在して0≦b≦1であるのも明らか。あわせて
z = abs + a(1-b)t
ただし、s, tはu,v,wのどれかで、ab≧0, a(1-b)≧0。というわけで、ご質問は肯定的に解決。
[2]さらに。Oを原点とする直交座標系(x,y)を定めて、zが点(1,0), (0,1),(-1,0),(0,-1)である場合それぞれについて[1]をやれば、x軸の正方向、x軸の負方向、y軸の正方向、y軸の負方向、都合4つの単位ベクトルがそれぞれ「0以上の実数p,q,rが存在し、z=pu+qv+rw」という形で表せる。
この準備をしておけば、任意のzについて、zがこの直交座標系の4つの象限のどれに入るかに応じて、x軸について正方向か負方向のどっちか、y軸について正方向か負方向のどっちか、を適切に選んで基底を構成し、zを成分表示すればよし。
※ ところでフラフープねずみのご質問をオソルオソル検討してみたら結構スッキリした形になったのだけれども、ご質問を閉じられてしまって残念。
えっ!あれ計算出来るんですかね?
また質問しましたのでよろしくお願いします。
http://oshiete.goo.ne.jp/qa/13881841.html
No.5
- 回答日時:
>p,q,rを非負でとれるでしょうか?
忘れてました(^^;
△UVW内部の点はUVの内分点とWとの内分点なので
p>0,q>0,r>0 で表せることになります。
△UVW内部に原点があるなら、
△UVW外部の点は△UVW内部の点の正の実数倍で
表せるので
p>0,q>0,r>0 で表せることになります。
No.2
- 回答日時:
z≠0のとき
p=z|u|^2/{u(|u|^2+|v|^2+|w|^2)}
q=z|v|^2/{v(|u|^2+|v|^2+|w|^2)}
r=z|w|^2/{w(|u|^2+|v|^2+|w|^2)}
とすると
pu=z|u|^2/{(|u|^2+|v|^2+|w|^2)
qv=z|v|^2/{(|u|^2+|v|^2+|w|^2)
rw=z|w|^2/{(|u|^2+|v|^2+|w|^2)
pu+qv+rw
=z(|u|^2+|v|^2+|w|^2)/(|u|^2+|v|^2+|w|^2)
=z
------------------
z=0のとき
p=w|u|^2/{u(|u|^2+|v|^2)}
q=w|v|^2/{v(|u|^2+|v|^2)}
r=-1
とすると
pu+qv=w
pu+qv-w=0=z
お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!
このQ&Aを見た人はこんなQ&Aも見ています
-
【大喜利】【投稿~9/7】 ロボットの住む世界で流行ってる罰ゲームとは?
ロボットの住む世界で流行ってる罰ゲームとは?
-
フォロワー20万人のアカウントであなたのあるあるを披露してみませんか?
あなたが普段思っている「これまだ誰も言ってなかったけど共感されるだろうな」というあるあるを教えてください
-
映画のエンドロール観る派?観ない派?
映画が終わった後、すぐに席を立って帰る方もちらほら見かけます。皆さんはエンドロールの最後まで観ていきますか?
-
海外旅行から帰ってきたら、まず何を食べる?
帰国して1番食べたくなるもの、食べたくなるだろうなと思うもの、皆さんはありますか?
-
天使と悪魔選手権
悪魔がこんなささやきをしていたら、天使のあなたはなんと言って止めますか?
-
出題ミスだね?
数学
-
数学の問題ですが、わかりません
数学
-
仕事をクビになり会社の門で憔悴していたらババアがいきなり話しかけてきました。 「この大きい袋に7で割
数学
-
-
4
1+2+3+…=?
数学
-
5
毎日毎日暑すぎて平方完成する気も起きません。 ギリギリの体力で実数x,yについて 2(x²+1)(y
数学
-
6
下の画像の中の三角形は正方形だ、と友達が言っていたのですが、その根拠のようなものはありますか? 二等
数学
-
7
数学を勉強すると論理的思考力が向上するという疑わしい主張が横行しているのはなぜですか?
数学
-
8
複素数平面について質問です。 点Zが原点Oを中心とする半径1の円上を動く時、 ω=(6Z-1)/(3
数学
-
9
微分係数の定義?
数学
-
10
写真の様な解き方はおかしいですか? 何故おかしいのかも教えてくれると助かりますm(_ _)m
数学
-
11
iに絶対値がつくとどうなるのかを教えてください
数学
-
12
京都大学で出題された次の問題に関する質問です。
数学
-
13
(2^3)-(-2)^3が2×2^3になる途中式を教えてください。
数学
-
14
(2)の問題なのですが、解答には3列目に書かれた数が7m-4、5列目に書かれた数が7n-2と表す、と
数学
-
15
Σを含んだ式変形
数学
-
16
次の説明で太い対角線とは何ですか? 一方、ユークリッド場理論では、n 点関数/相関子は、太い対角線
数学
-
17
写真の定理4-5の証明についてですが、なぜ赤線部のように0<x<1/a'と範囲を定めるのですか? ま
数学
-
18
下の写真 なぜこれは同値性考えずにそのまま2乗できるのでしょうか
数学
-
19
1/z^2 を z=i の周りで展開しなさい。 この問題が分からないです。また複素関数論のいい教科書
数学
-
20
線形代数で回転行列からθがいくらか求めていた時に固有ベクトルのならべる前後でθが変わってしまいました
数学
おすすめ情報
- ・漫画をレンタルでお得に読める!
- ・人生のプチ美学を教えてください!!
- ・10秒目をつむったら…
- ・あなたの習慣について教えてください!!
- ・牛、豚、鶏、どれか一つ食べられなくなるとしたら?
- ・【大喜利】【投稿~9/18】 おとぎ話『桃太郎』の知られざるエピソード
- ・街中で見かけて「グッときた人」の思い出
- ・「一気に最後まで読んだ」本、教えて下さい!
- ・幼稚園時代「何組」でしたか?
- ・激凹みから立ち直る方法
- ・1つだけ過去を変えられるとしたら?
- ・【あるあるbot連動企画】あるあるbotに投稿したけど採用されなかったあるある募集
- ・【あるあるbot連動企画】フォロワー20万人のアカウントであなたのあるあるを披露してみませんか?
- ・映画のエンドロール観る派?観ない派?
- ・海外旅行から帰ってきたら、まず何を食べる?
- ・誕生日にもらった意外なもの
- ・天使と悪魔選手権
- ・ちょっと先の未来クイズ第2問
- ・【大喜利】【投稿~9/7】 ロボットの住む世界で流行ってる罰ゲームとは?
- ・推しミネラルウォーターはありますか?
- ・都道府県穴埋めゲーム
- ・この人頭いいなと思ったエピソード
- ・準・究極の選択
このQ&Aを見た人がよく見るQ&A
デイリーランキングこのカテゴリの人気デイリーQ&Aランキング
マンスリーランキングこのカテゴリの人気マンスリーQ&Aランキング
-
数学Aについて質問です。 1. 正...
-
垂心はなぜHで表すのか?
-
エクセルで文書の改訂記号を作...
-
三角形折りの卓上札に両面印刷...
-
合同と=の違い
-
正八角形で・・・・
-
複素数平面上の点U(u),V(v),W(w...
-
この世に「絶対」なんてない。 ...
-
Wordで三角柱を作成したいので...
-
スマホでこの画像の4G左側にあ...
-
高校教科書の問題
-
1の問題ですがBD直径より、角DA...
-
三角形ABCと三角形DEFの重心は...
-
正八角形の三個の頂点を結んで...
-
ベクトルの重心
-
台形の対角線の求め方
-
正八角形についてです。 3個の...
-
四角形の重心の求め方の定義名
-
中学マッチ棒
-
120度での三平方の定理について...
おすすめ情報