ここから質問投稿すると、最大4000ポイント当たる!!!! >>

Mn(acac)3,Ni(acac)2,2H2O,Cu(acac)2のアセチルアセトナト錯体を同定し、性質を明らかにするのに適した分析手段は{吸光分析法、赤外分析法、原子吸光分析法、NMR法、電気分析法、熱分析法、ガスクロマトグラフ法、高速液体クロマトグラフ法}のそれぞれどれにあたるのですか?また、その理由について教えてください。お願いします。

このQ&Aに関連する最新のQ&A

A 回答 (1件)

yukittiさんの


> 同定し、性質を明らかにする
という表現の内容にもよるのですが。

まず、NMRは通常の範囲では意味のある結果は得られません。
全て常磁性錯体ですから。

次に赤外分光法も微妙です。ニッケル錯体に含まれるacacのみ
配位様式が異なっているため、もしかしたら区別できるかもしれませんが。
(Ni-acac錯体は三核構造です。)

原子吸光がおそらく最適でしょう。問答無用で金属の定性ができますから。

吸光分析も適していると思います。特にd-d遷移に対応する吸収帯については
広く研究がなされているため、解釈もつけやすいでしょう。

クロマトはそれぞれの錯体の標準試料があって初めて意味のある結果
となるのでは?同じ条件で測定して同じようなピークが得られたので、
二つのものは同じものという使い方が基本でしょうから。

残った二つの分析法にはそれぞれ、以下のようなコメントを。

電気分析がおもしろそうなのはマンガン錯体ですね。比較的ほかの
酸化状態をとりやすいでしょうから。

熱分析はニッケル錯体でしょう。水和水がついてなければ加熱しても
分解する様子しか分かりませんから。
    • good
    • 0

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qニッケル錯体の配位子と色

合成した[Ni(acac)(tmen)]B(C6H5)4を様々な有機溶媒に溶かし、色の変化をみるという実験を行いました。その結果赤色に変化したものと、灰青色に変化したものがありました。また、溶媒の中にアセトンが含まれていたのですが、アセトンだけ温めた時と冷却した時の色の変化も観察しました。
赤の時が4配位、灰青の時が6配位であるようですが何故このような色になるのか、よくわかりません。d-d遷移による呈色が関係する事はわかるのですけれども…(遷移の時に吸収した光の補色に見えることはなんとなくですがわかります)。配位子の交換によって吸収帯が移動するのですか??
また、アセトンに溶かした時、温度変化によって色が変化したのは、4配位と6配位の平衡状態が移動するからでしょうか。
よろしくお願い致します。

Aベストアンサー

まず、d-d 遷移 と書かれてますが、錯体になっていなければ、
d 軌道は、同じエネルギー準位です。配位子によって分裂します。
配位子の電子軌道と金属の d 軌道の相互作用です。6配位の場合
dz2, dx2-y2 軌道はぶつかって反発があり不安定になります。
dxy, dyz, dzx は安定化されます。この d-d 軌道のエネルギーは
配位子によって変わります。これは「配位子場の理論」を調べて
ください。本もたくさん出ています。数行では説明できません。
配位力の強い配位子ほど d 軌道の分裂が大きくなります。

質問の [Ni(acac)(tmen)]B(C6H5)4 と有機溶媒では、acac と tmen は
比較的強く4配位してます。( x,y に配位)
エチレンジアミン(en)ではなくテトラメチルエチレンジアミン(tmen)
を使っているのがミソです。有機溶媒に溶けやすくするだけでなく、
z 方向の配位子を少し邪魔して外れやすくしています。適度な配位力の
溶媒では、温度によって外れたり配位したりするのがあるということ
です。


配位子場の理論
http://koho.osaka-cu.ac.jp/vuniv2002/materials2002/Lec_others/cft.html

色の変わる配位化合物
http://www.tus-kaken.com/old/02wed.html

まず、d-d 遷移 と書かれてますが、錯体になっていなければ、
d 軌道は、同じエネルギー準位です。配位子によって分裂します。
配位子の電子軌道と金属の d 軌道の相互作用です。6配位の場合
dz2, dx2-y2 軌道はぶつかって反発があり不安定になります。
dxy, dyz, dzx は安定化されます。この d-d 軌道のエネルギーは
配位子によって変わります。これは「配位子場の理論」を調べて
ください。本もたくさん出ています。数行では説明できません。
配位力の強い配位子ほど d 軌道の分裂が大きくなります。

...続きを読む

Qなぜ酢酸ナトリウム?

この前化学の実験で、アニリン塩酸塩と無水酢酸との反応によりアセトアニリドの合成実験を行ったのですが、そのときに酢酸ナトリウムも加えることになっていました。なぜ酢酸ナトリウムも加える必要があるのでしょうか。入れても意味がないようにしか僕には思えません。どうか回答お願いします。

Aベストアンサー

なぜといわれるとかなり難しい話になります。
大学で習うのですがこの反応は求核置換反応でアニリンNHのNにある非共有電子対が無水酢酸のカルボニル基のCを攻撃し、電子移動で無水酢酸の一部分が酢酸イオンとして脱落する事で進行します。ただし、反応開始時にアニリンが塩酸塩になっています。このままでは反応しませんので塩酸塩をとってアニリンに戻さないといけません。そのアニリンに戻すために酢酸ナトリウムが加えられているのです。酢酸ナトリウムであるのは酢酸ナトリウムから生じる酢酸イオンが無水酢酸側を攻撃しても影響がないからです。塩化ナトリウムや硝酸ナトリウムなどなら発生する塩化物イオンや硝酸イオンが無水酢酸を攻撃した時、無水酢酸の構造が変わってしまって反応が正常に進行しなくなる恐れがあります。
反応開始にアニリン塩酸塩ではなくアニリンを使用した場合は酢酸ナトリウムは不要です。

Qビス(アセチルアセトナト)ニッケル(2)の合成について

ビス(アセチルアセトナト)ニッケル(2)を合成するという実験で、塩化ニッケル6水和物とアセチルアセトンと酢酸ナトリウムを加えたのですが、どうして酢酸ナトリウムを加えるのですか?

Aベストアンサー

反応式はお考えになりましたか?

 「塩化ニッケル;NiCl2」と「アセチルアセトン;CH3-CO-CH=C(OH)-CH3」を反応させると,「ビス(アセチルアセトナト)ニッケル(2);Ni[CH3-CO-CH=C(O-)-CH3]2」以外に何が出きるでしょうか。

 出きるものが邪魔なので,それを除くために塩基(酢酸ナトリウム)が必要なのでしょう。あるいは,アセチルアセトンをエノレートに変えるのに必要なのか。

Qコバルトの錯体について質問です。

塩化コバルト(2)とエチレンジアミンなどから、trans-[CoCl2(en)2]Cl・HCl・2H2Oを合成し、それから[CoCl2(en)2]Clを合成するという実験をしました。

塩化コバルト(2)を水に溶かし、エチレンジアミンを加え、これに空気を2時間激しく通して、コバルトを2価から3価へ酸化をする、という操作があったのですが、初めからなぜ3価のコバルトを使わなかったのでしょうか?
3価のコバルトはあまり安定ではないと聞いたことがあるような気がしたので、錯体を作れば安定に存在できるのかな、とか考えていましたが、
ここで調べていたら、2価だと置換活性で、3価は置換不活性ということが書いてありました。
ということは、3価では反応しにくいから、2価を使ったということでしょうか。
なぜ2価と3価では、活性不活性があるのでしょう?また、安定不安定はなぜそうなるのでしょうか。

あと、今回の実験では、trans-[CoCl2(en)2]Clが初めにできて、それからcis-[CoCl2(en)2]Clを作りました。
これは、立体障害などからtransのほうが安定なので、先にtransができたのではと考えましたが、
原因はそれだけでしょうか?また、cisからtransを作ることはできるのでしょうか?。

塩化コバルト(2)とエチレンジアミンなどから、trans-[CoCl2(en)2]Cl・HCl・2H2Oを合成し、それから[CoCl2(en)2]Clを合成するという実験をしました。

塩化コバルト(2)を水に溶かし、エチレンジアミンを加え、これに空気を2時間激しく通して、コバルトを2価から3価へ酸化をする、という操作があったのですが、初めからなぜ3価のコバルトを使わなかったのでしょうか?
3価のコバルトはあまり安定ではないと聞いたことがあるような気がしたので、錯体を作れば安定に存在できるのかな、とか考えていましたが、
こ...続きを読む

Aベストアンサー

>なぜ2価と3価では、活性不活性があるのでしょう?

d電子の数の違いについて、
Co((3))はd電子が6つなので、強配位子場のとき配位子場安定化エネルギーが最も大きいため、配位子をよく引き付ける。
(詳しいことは配位子場理論をどうぞ)

また3価なのでより配位子の電子を引き付けやすい。

よって配位子の交換がおこりにくいと思われます。

もちろん分光化学系列によると、H2O<enなので、配位子がH2O(水に溶かしたとき)よりenが配位するほうが安定なので、十分時間がたてば、enが配位しているでしょう。

cis、transはやはり対称性の高いtransのほうが安定だと思いますね。
なのでcisからtransに変えることは可能だと思います。

私のわかる範囲で回答してみました。
参考になれば幸いです。

Qd電子数の数え方

金属錯体の中心金属のd電子を数える方法ですが
なぜ族番号から酸化数を引いた値なのでしょうか。
例えば酸化数0のVの場合、d電子は族番号と同じ5
と数えられるみたいですが
電子配置自体は4s軌道に2電子、3d軌道に3電子ですよね
なぜ、s軌道分までカウントするのでしょうか。

Aベストアンサー

原子番号が20より大きい原子では、4s軌道よりも3d軌道の方が軌道エネルギーが低いので、4s軌道よりも先に3d軌道に電子が詰められることは、構成原理(Aufbau principle)から考えて自然なことです。

むしろ中性バナジウム原子の電子配置が (3d)3 (4s)2 になっていることの方が、軌道エネルギーの低い順に電子を詰めていく、という構成原理に反しています。これは、「4s軌道と3d軌道の軌道エネルギーの差は小さく、電子間のクーロン反発エネルギーは、4s電子と4s電子, 4s電子と3d電子, 3d電子と3d電子, の順で大きい。3d電子の一部を4s軌道に入れると軌道エネルギーは損をするけど電子間反発エネルギーで得をするので、(3d)5 (4s)0 の電子配置よりも (3d)3 (4s)2 の電子配置の方がトータルのエネルギーは低くなる」と考えればいいです。3d電子間よりも4s電子間の方が電子反発が小さくなるのは、「M殻の3d軌道よりもN殻の4s軌道の方が軌道が広がっていて電子の動ける範囲が広くなるので、電子間の平均距離が3dよりも4sの方が大きくなるため」と説明することができます。

孤立した中性原子では構成原理が成り立たないのに、金属錯体の酸化数ゼロの中心金属で構成原理が成り立つことについては、以下のような説明ができます。質問者さんの納得できる説明がひとつでもあれば幸いです。

◆配位子の電子との電子反発は3d電子よりも4s電子の方が大きいため、4s電子の方がクーロン反発力が大きくなる。クーロン反発力の軽減、といううまみがなくなるので、孤立中性原子とは異なり構成原理が成り立つ。
◆配位子の軌道との相互作用は3d軌道よりも4s軌道の方が大きく、4s軌道の方が軌道エネルギーの上がり幅が大きい。4s軌道と3d軌道のエネルギー差が大きくなるので、孤立中性原子とは異なり構成原理が成り立つ。
◆配位子と配位結合するために、4s軌道はsp3混成軌道(四面体型錯体)またはd2sp3混成軌道(八面体型錯体)を作る。これらの混成軌道には配位子由来の電子が入るので、4s軌道にもともと入っていた電子は、混成に使われなかった3d軌道に入るしかない。
◆分子軌道法で考えると、3d軌道は配位子との相互作用がそれほど大きくないので、中心金属の内殻軌道と考えることができるが、4s軌道は配位子との相互作用が大きいので、分子全体に広がった軌道の一成分になってしまう(LCAO近似)。つまり金属錯体の中心金属の3d軌道を(近似的に)考えることはできても、分子軌道法では中心金属の4s軌道というものをそもそも考えない。

原子番号が20より大きい原子では、4s軌道よりも3d軌道の方が軌道エネルギーが低いので、4s軌道よりも先に3d軌道に電子が詰められることは、構成原理(Aufbau principle)から考えて自然なことです。

むしろ中性バナジウム原子の電子配置が (3d)3 (4s)2 になっていることの方が、軌道エネルギーの低い順に電子を詰めていく、という構成原理に反しています。これは、「4s軌道と3d軌道の軌道エネルギーの差は小さく、電子間のクーロン反発エネルギーは、4s電子と4s電子, 4s電子と3d電子, 3d電子と3d電子, の順で大きい...続きを読む

Q配位子場安定化エネルギー???

次の金属イオンが高スピン型の八面体形と四面体形錯体をつくるとき、両者の配位子場安定化エネルギーの差を計算せよ。ただし、Δ_t=(4/9)Δ。とする。
(1)Cr2+ (2)Mn2+ (3)Fe2+

という問題で、(上の問題文が見づらいようでしたら
https://drive.google.com/file/d/0B5GeO_NHMdeRMm82OUhOMmFabzA/edit?usp=sharing
をご覧ください。全く同じ問題文です)

解答は
https://drive.google.com/file/d/0B5GeO_NHMdeRSXlPQWZOdFVNS1k/edit?usp=sharing
です。
解答を見てもちんぷんかんぷんです。

問題文に出てくるデルタのような記号Δは何ですか? 扱っている教科書に出てきません。意味も読み方もわかりません。添え字の t と o も何なんでしょうか。解答に oct と tet がありますからこれのことなんでしょうけど、何の単語の頭文字でしょうか。

LSFE も???です。こちらはまだ教科書で探してみていないので、ひょっとしたら載っているかもしれませんが。

次の金属イオンが高スピン型の八面体形と四面体形錯体をつくるとき、両者の配位子場安定化エネルギーの差を計算せよ。ただし、Δ_t=(4/9)Δ。とする。
(1)Cr2+ (2)Mn2+ (3)Fe2+

という問題で、(上の問題文が見づらいようでしたら
https://drive.google.com/file/d/0B5GeO_NHMdeRMm82OUhOMmFabzA/edit?usp=sharing
をご覧ください。全く同じ問題文です)

解答は
https://drive.google.com/file/d/0B5GeO_NHMdeRSXlPQWZOdFVNS1k/edit?usp=sharing
です。
解答を見てもちんぷんかんぷんです。

問題文に出てくるデ...続きを読む

Aベストアンサー

> 問題文に出てくるデルタのような記号Δは何ですか?

配位子場分裂パラメーターです。

> 添え字の t と o も何なんでしょうか。

それぞれ tetrahedral と octahedral の頭文字です。

> LSFE も???です。

LSFEではありません。LFSEです。Ligand Field Stabilization Energy の略です。日本語でいうと配位子場安定化エネルギーです。

> 解答を見てもちんぷんかんぷんです。

Cr2+の八面体形錯体の場合は、以下のようにLFSEを計算します。

Crは周期表第6族の元素だから、これの2価イオンのd電子数は6-2=4個。高スピン型だからエネルギー準位の低い軌道(t2g軌道)に3個電子を詰めた後に、エネルギー準位の高い軌道(eg軌道)に残りの1個の電子を詰める。t2g軌道の電子のエネルギーは電子1個あたり(-2/5)Δoで、eg軌道の電子のエネルギーは電子1個あたり(+3/5)Δoだから、LFSEは
(-2/5)Δo×3+(+3/5)Δo×1=(-3/5)Δo
となる。

他も同様です。がんばって下さい。

> 問題文に出てくるデルタのような記号Δは何ですか?

配位子場分裂パラメーターです。

> 添え字の t と o も何なんでしょうか。

それぞれ tetrahedral と octahedral の頭文字です。

> LSFE も???です。

LSFEではありません。LFSEです。Ligand Field Stabilization Energy の略です。日本語でいうと配位子場安定化エネルギーです。

> 解答を見てもちんぷんかんぷんです。

Cr2+の八面体形錯体の場合は、以下のようにLFSEを計算します。

Crは周期表第6族の元素だから、これの2価イオンのd電子数は6-2...続きを読む


人気Q&Aランキング