人に聞けない痔の悩み、これでスッキリ >>

格子定数の求め方について、何か結晶の例をあげて説明してもらえませんか。X線回折ピークからどの値を使って計算すればよいのでしょう。わかりにく質問ですいません。

このQ&Aに関連する最新のQ&A

A 回答 (2件)

立体構造の話を言葉だけで分かるように説明するのは私には難しいので、図で回折ぢゃなくて解説されているウェブサイトのURLを書いておきますので、参考にされるといいと思います。



http://www.chem.sci.osaka-u.ac.jp/chem/instrumen …

http://www.shse.u-hyogo.ac.jp/kumagai/eac/chem/l …

http://www.natc.co.jp/bunseki/xrd.html

http://www.ritsumei.ac.jp/se/re/numailab/Crystal …
    • good
    • 0

X線回折ピークってのは、干渉縞になっていて、間隔が分かるのでしょうか?


それであるならばで、お話しします。

高校物理(今大学1年ならゆとり教育のせいで習ってないかも)で、習った第1層で反射した光と第2層で反射した光の干渉の光路差などから、第1層と第2層の距離dが求まり、そのdが格子定数だと思われます。
間違ってるかもしれませんのでそこらへんよろしく。

入射光    反射光1
\       /
 \角度   /    反射光2
  \θ | /     /    屈折率1
   \|/     /
 ○  ○  ○  ○  ○  第1層
     \   /
      \ /   屈折率n
 ○  ○  ○  ○  ○  第2層

反射光1と2の位相差(?)は、
2dsinθ'
参考;nsinθ=1sinθ'(スネルの法則)

こんな感じだった気がします。
今一度、確認後、レポート書いて下さいね。
    • good
    • 1

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q格子定数の求め方教えてください!!

こんにちは。
僕は、結晶学を勉強している大学生です。
現在、斜方晶構造の格子定数を算出しようと勉強しているのですが格子定数a, b, cを求める式を作ることができません。ご存知の方教えて教えて下さい。
斜方晶の関係式は以下のようになります。
1/d^2 = h^2/a^2 + k^2/b^2 + l^2/c^2
d, h, k, lの値は既知でa=,b=,c=の式を教えていただきたいです。
また、格子定数を簡単に求められるソフトなどをお知りであれば教えて下さい。
どうかよろしくお願いいたします。

Aベストアンサー

> 格子定数a, b, cを求める式を作ることができません。

これは初等数学の教えるとおり,線形独立な(=異なる面方位の)3つ以上の関係がない限り,どうやっても求まりません。線形独立な式が3つあるなら,三元一次連立方程式を解けばよいだけです。

> 斜方晶の関係式は以下のようになります。

斜方晶だけでなく,正方晶でも立方晶でも成り立ちます。

> 格子定数を簡単に求められるソフト

XRD などのブラッグの回折パターンから格子定数を精密に求めるには,通常,リートベルト解析という計算を行います。RIETAN というソフトが有名です。ただ,大雑把で良くて,点群が分かっていて面指数まで分かっているなら,電卓で十分計算できると思います。

Qミラー指数:面間隔bを求める公式について

隣接する2つの原子面の面間隔dは、ミラー指数hklと格子定数の関数である。立方晶の対称性をもつ結晶では

d=a/√(h^2 + k^2 + l^2) ・・・(1)

となる。

質問:「(1)式を証明せよ」と言われたのですが、どうすれば言いかわかりません。やり方を教えてもらえませんか_| ̄|○

Aベストアンサー

「格子定数」「ミラー指数」などと出てくると構えてしまいますが、この問題の本質は3次元空間での簡単な幾何であり、高校生の数学の範囲で解くことができます。

固体物理の本では大抵、ミラー指数を「ある面が結晶のx軸、y軸、z軸を切る点の座標を(a/h, b/k, c/l)とし、(h, k, l)の組をミラー指数という(*1)」といった具合に説明しています。なぜわざわざ逆数にするの?という辺りから話がこんがらがることがしばしばです。
大雑把に言えばミラー指数は法線ベクトルのようなものです。特に立方晶であれば法線ベクトルと全く同じになります。すなわち立方晶の(111)面の法線ベクトルは(1,1,1)ですし、(100)面の法線ベクトルは(1,0,0)です。法線ベクトルなら「ミラー指数」よりずっと親しみがあり解けそうな気分になると思います。

さて(hkl)面に相当する平面の方程式を一つ考えてみましょう。一番簡単なものとして
hx + ky + lz=0  (1)
があります。(0,0,0)を通る平面で法線ベクトルは(h,k,l)です。
これに平行な、隣の平面の式はどうでしょうか。
hx + ky + lz = a  (2a)
hx + ky + lz = -a  (2b)
のいずれかです。これがすぐ隣の平面である理由(そのまた間に他の平面が存在しない理由)は脚注*2に補足しておきました。
点と直線の距離の公式を使えば、題意の面間隔dは原点(0,0,0)と平面(2a)の間隔としてすぐに
d=a/√(h^2+k^2+l^2)  (3)
と求められます。

点と直線の距離の公式を使わなくとも、次のようにすれば求められます。
原点Oから法線ベクトル(h,k,l)の方向に進み、平面(2a)とぶつかった点をA(p,q,r)とします。
OAは法線ベクトルに平行ですから、新たなパラメータtを用いて
p=ht, q=kt, r=lt  (4)
の関係があります。
Aは平面(2a)上の点でもありますから、(4)を(2a)に代入すると
t(h^2+k^2+l^2)=a
t=a/(h^2+k^2+l^2)  (5)
を得ます。
ここにOAの長さは√(p^2+q^2+r^2)=|t|√(h^2+k^2+l^2)なので、これを(5)に代入して
|a|/√(h^2+k^2+l^2)  (6)
を得ます。OAの長さは面間隔dにほかならないので、(3)式が得られたことになります。

bokoboko777さん、これでいかがでしょうか。

*1 (h, k, l)の組が共通因数を持つ場合には、共通因数で割り互いに素になるようにします。例えば(111)面とは言いますが(222)面なる表現は使いません。
*2 左辺はhx+ky+lzでよいとして、なぜ右辺がaまたは-aと決まるのか(0.37aや5aにならないのは何故か)は以下のように説明されます。
平面をhx+ky+lz = C (Cはある定数)と置きます。この平面は少なくとも一つの格子点を通過する必要があります。その点を(x0,y0,z0)とします。
h,k,lはミラー指数の定義から整数です。またx0,y0,z0はいずれもaの整数倍である必要があります(∵格子点だから)。すると右辺のCも少なくともaの整数倍でなければなりません。
次に右辺の最小値ですが、最小の正整数は1ですから平面hx + ky + lz = aが格子点を通るかどうかを調べ、これが通るなら隣の平面はhx + ky + lz = aであると言えます。このことは次の命題と等価です。
<命題>p,qが互いに素な整数である場合、pm+qn=1を満たす整数の組(m,n)が少なくとも一つ存在する
<証明>p,qは正かつp>qと仮定して一般性を失わない。
p, 2p, 3p,...,(q-1)pをqで順に割った際の余りを考えてみる。
pをqで割った際の余りをr[1](整数)とする。同様に2pで割った際の余りをr[2]・・・とする。
これらの余りの集合{r[n]}(1≦n≦(q-1))からは、どの二つを選んで差をとってもそれはqの倍数とは成り得ない(もし倍数となるのならpとqが互いに素である条件に反する)。よって{r[n]}の要素はすべて異なる数である。ところで{r[n]}は互いに異なる(q-1)個の要素から成りかつ要素は(q-1)以下の正整数という条件があるので、その中に必ず1が含まれる。よって命題は成り立つ。

これから隣の平面はhx + ky + lz = aであると証明できます。ただここまで詳しく説明する必要はないでしょう。証明抜きで単に「隣の平面はhx + ky + lz = aである」と書くだけでよいと思います。

参考ページ:
ミラー指数を図なしで説明してしまいましたが、図が必要でしたら例えば
http://133.1.207.21/education/materdesign/
をどうぞ。「講義資料」から「テキスト 第3章」をダウンロードして読んでみてください。(pdfファイルです)

参考URL:http://133.1.207.21/education/materdesign/

「格子定数」「ミラー指数」などと出てくると構えてしまいますが、この問題の本質は3次元空間での簡単な幾何であり、高校生の数学の範囲で解くことができます。

固体物理の本では大抵、ミラー指数を「ある面が結晶のx軸、y軸、z軸を切る点の座標を(a/h, b/k, c/l)とし、(h, k, l)の組をミラー指数という(*1)」といった具合に説明しています。なぜわざわざ逆数にするの?という辺りから話がこんがらがることがしばしばです。
大雑把に言えばミラー指数は法線ベクトルのようなものです。特に立方晶であれば法線ベ...続きを読む

QシリコンのXRDデータから面指数を求めるやり方

以下はSiのXRDのデータの一部です。このピークが面指数004からのものなのですが、その求め方を解説していただけないでしょうか。l(f),l(v)が何を意味しているのかはっきりとわからなかったのですが、他のピークとの強度の総対比を表してるのではないかなあと思います。
d(A), l(f), l(v), 2θ, θ, 1/(2d)
1.3577, 6, 14, 69.130, 34.565, 0.3683

X線はCuKα1で、波長λ=1.5406です。

このようなものを見積もるフリーソフト、Webデータベースがあると聞いたのですが、あるのでしょうか。

Aベストアンサー

>面指数(hkl)がなぜ、004となるかについてです。

(hkl)=(004)なのです。質問になってません。

>面間隔はd=1.3577 A, 2θは69.136です。格子定数は5.430Aです。XRDで試料を分析したとき、どのピークがどの面指数からのものかを決定する方法がわからなくて困ってます。


格子定数が5.430Aということは立方晶ですね?
その場合下記の計算になります。

逆格子ベクトル g=√(h^2+k^2+l^2)/a=0.7366
面間隔 d=1/g=1.3575
(こんな計算しなくても(001)が5.43だから5.43/4=1.3575でもいいですが)

2d sinθ=λ
θ=sin^-1(λ/2/d)=34.57
2θ=69.14

すなわち格子定数が分かっていれば2θは一意に求まります。

強度比は結晶構造因子やローレンツ因子などを計算しなくてはいけません。
下記サイトはXRDプロファイルを書いてくれます。
PDF(acrobatのほう)になって出力されます。demoでログインすれば良いでしょう。これで見ると28.5°くらいに最大ピークがありますね。反射の候補は以下があります。
h k l d
1 1 1 3.136
2 2 0 1.920
3 1 1 1.637

面間隔から2θ=28.5°は(111)反射なのでしょう。

JCPDSカードのd(A), l(f), l(v), 2θ, θ, 1/(2d)のリスト部を全て見せてくれれば、データの解釈は分かります。

参考URL:http://icsd.ccp14.ac.uk/icsd/

>面指数(hkl)がなぜ、004となるかについてです。

(hkl)=(004)なのです。質問になってません。

>面間隔はd=1.3577 A, 2θは69.136です。格子定数は5.430Aです。XRDで試料を分析したとき、どのピークがどの面指数からのものかを決定する方法がわからなくて困ってます。


格子定数が5.430Aということは立方晶ですね?
その場合下記の計算になります。

逆格子ベクトル g=√(h^2+k^2+l^2)/a=0.7366
面間隔 d=1/g=1.3575
(こんな計算しなくても(001)が5.43だから5.43/4=1.3575でもいいですが)

2d...続きを読む

Q格子定数教えてください!

LiF、Si、GaAs、NH4Br
の格子定数を知りたいのですが、教科書にもネットにも載ってなくて困っています。。教えていただけませんか??

Aベストアンサー

LiF 岩塩構造 a=4.02Å
Si ダイヤモンド構造 a=5.42
NH4Br CsCl構造 a=4.05
以上化学大辞典(共立出版)より。

GaAs 閃亜鉛鉱構造 a=5.65
http://www.crystals.jp/GaAs.html
より。

でした。

QX線回折(XRD)分析の半値幅について

現在粉末用のXRD装置を使用しているのですが、半値幅に含まれる情報に関して教えてください!
参考書などを呼んでいると、結晶性のピークに着目した場合、ピークの半値幅が大きくなるほど結晶子サイズは小さいことを意味すると書いてあり、これはなんとなくわかりました。
しかし、非結晶性のものを測定すると一般的にはブロードピークとなるものが多いかと思うのですが、相互関係がわかりません・・・。非結晶性のものは結晶子サイズが小さいということではないですよね?

段々結晶子サイズが小さくなっていった時に、少しづつピークはブロードに近づくとは思うのですが、
・結晶子サイズが小さくなっている
というのと、
・非結晶性のものである
というものの区別はどうやって判断したらよいのですか?ある程度は半値幅を超えたら非結晶性のものとかいう基準があるのでしょうか?

Aベストアンサー

半値幅から微結晶サイズを求めるシェラーの式は、固体中にある
微結晶のサイズを求めるための式です。適用できる微結晶サイズは
nmオーダから0.1μmまでの範囲です。この点に注意してください。

さて微結晶サイズが小さくなると半値幅はサイズに反比例して拡がり、
ピークはだんだん鈍くなります。さらに小さくなるとブロードで
ガラス等による散乱パターンに似たものになることも有ります。

ピークの拡がりは、1)結晶が十分な大きさで無いこと、2)結晶に
欠陥があるか、または空間的な規則性が低いか、3)装置による制約
から来ます。
原因3)は基準物質を使い補正計算をしてある程度除去することが
できます。
原因1)の影響を考慮したのがシェラーの式ですが、常に原因2)の寄与
も含まれています。
原因2)は小さくても結晶で有れば散乱強度を決める構造因子は定まります。
ここで構造因子に欠陥や小さくなることで発生した構造の乱れを組込めば
非晶性の広がったハローを再現できるかも知れません。
しかし、非晶性物質では構造の乱れは大きすぎ、結晶学的な構造因子は
もう決められません。
その代わりに、原子の相互配置を確率的に表した動径分布関数が散乱強度
の計算に導入されます。
一つの物質からの散乱強度の計算に、ここまでは構造因子方式、ここからは
動径分布関数方式という使い分けはされていません。

したがって、結晶子サイズが小さくなっているというのと、非結晶性の
ものであるということの明確な境界は無いように見えます。
当然、ある半値幅を超えたら非結晶性のものとかいう基準は有りません。

溶融体を急冷して結晶化させようとした場合、できたモノを欠陥だらけの
極微細結晶からなるとするか、非晶質になったと解釈するかは半値幅だけ
からはできないと思います。

半値幅から微結晶サイズを求めるシェラーの式は、固体中にある
微結晶のサイズを求めるための式です。適用できる微結晶サイズは
nmオーダから0.1μmまでの範囲です。この点に注意してください。

さて微結晶サイズが小さくなると半値幅はサイズに反比例して拡がり、
ピークはだんだん鈍くなります。さらに小さくなるとブロードで
ガラス等による散乱パターンに似たものになることも有ります。

ピークの拡がりは、1)結晶が十分な大きさで無いこと、2)結晶に
欠陥があるか、または空間的な規則性が低...続きを読む

QX線回折について 格子定数a,b,cとh,k,lから2θを求める方法

格子定数a,b,cとh,k,lから2θを求めるための式を教えてください。

Aベストアンサー

a,b,cとh,k,lから面間隔dが決まり、このdと使用X線の波長をBraggの式に入れれば、θが決まります。

面間隔dと、a,b,c,h,k,lを結ぶ関係式は、幾何学の問題として決まり、結晶系によって変わります。一般的に扱うためには逆格子ベクトルを用いることになりますが、立方晶や正方晶の場合は、直接簡単な式を書き下すことが出来ます。

各結晶系の場合の面間隔の式は、X線回折の本には必ず出ていると思いますので、それを参照して頂く方がいいでしょう。

QX線のKαって何を意味するのでしょう?

タイトルのまんまですが、XRD、XPSなどで使われる特性X線のCu-Kα線、Mg-Kα線のKαってなにを意味するものなのでしょうか?
ちょっと気になった程度のことなので、ご覧のとおり困り度は1ですが、回答もきっとそんなに長くならないんじゃないかと思うのでだれか暇な人教えて下さい。

Aベストアンサー

ちょっとうろ覚えなんですが。。。

X線は、フィラメント(主にタングステン(W)が用いられている)から電子を取り出し(加熱で)、それをX線を発生するターゲット(アルミニウム(Al)やマグネシウム(Mg)や銅(Cu))などに電子を衝突させて発生させます。
ターゲットとなる材料の電子軌道はそのエネルギ-準位がとびとびでかつ元素によって特有の値を持ちます。電子衝突によって飛び出した電子が仮にK殻の電子であったとします。K殻は他の殻(LやM)に比べて低いエネルギーにあるので、L殻やM殻の電子は安定した状態を保とうと、K殻へ落ち込みます。このとき(K殻のエネルギー)-(L殻のエネルギー)に相当するエネルギーがあまるので、これがX線となりこのエネルギーをもつX線が発生します。

そこで、potemkineさんの質問にあるとおり、Kαとかの命名法ですが、Kに相当するものは電子が衝突して飛び出した殻を示し、αは飛び出した殻に対していくつ外側の殻から電子が飛び出したのかを示すもので、1つ上からならα、2つ上ならβ。3つ上ならγといったようにあらわします。
例えば、K殻の電子が飛び出し、そこをM殻が埋めた場合(2つ上の準位)はKβ、L殻の電子が飛び出しそこをM殻が埋めた場合はLα
ちなみに下からK殻、L殻、M殻、N殻の順番です。

エネルギーや半値幅(エネルギーの広がり)の面から一般に用いられてるX線は、AlKα、CuKα、MgKαなどです。

ちょっとうろ覚えなんですが。。。

X線は、フィラメント(主にタングステン(W)が用いられている)から電子を取り出し(加熱で)、それをX線を発生するターゲット(アルミニウム(Al)やマグネシウム(Mg)や銅(Cu))などに電子を衝突させて発生させます。
ターゲットとなる材料の電子軌道はそのエネルギ-準位がとびとびでかつ元素によって特有の値を持ちます。電子衝突によって飛び出した電子が仮にK殻の電子であったとします。K殻は他の殻(LやM)に比べて低いエネルギーにあるので、L殻や...続きを読む

QX線回折(XRD)について

XRDのピークに(002)とか(004)とかたくさんのピークがありますよね。
それから格子定数を求めようと思っています。
2dsinθ=nλの式に当てはめますよね。
その時に(002)ピークから格子定数をもとめる場合と、(004)からピークを求める場合はnの値をそれぞれ2と4にすればいいんでしょうか?
あまり結晶構造のことは詳しくないので、誰か助けてください。

それとBi超伝導の2212相というのがありますよね?
たとえば(001)というピークがあれば、そこからすぐにcが求まりますよね。
でここで疑問に思ったのですが、Bi2212のXRDは、(00偶数)ピークしか出なかったと思います。なぜ偶数しか出ないのでしょうか?

Aベストアンサー

2dsinθ=nλと書いた場合のdは、面間隔であって格子定数ではありません、おそらく。
上の式は、面間隔がdの反射面(h k l)によるn次のブラッグ反射と読みます。
または、
2(d/n)sinθ=λ
と書き換え、面間隔が(d/n)の反射面(nh nk nl)による1次のブラッグ反射と読みます。
格子定数とは、ブラベー格子を表記するために必要な値のことで、平行六面体の3つの辺の長さと、それらのなす3つの角からなります。ブラベー格子の対称性が上がるとこのパラメータの数は少なくなり、立方晶系の場合は、1つ辺の長さのみであらわします。
よって立方晶系の場合は、格子定数aと面間隔d'のhkl反射には
d'=a/√(h^2+k^2+l^2)
という関係があるので、
a=λ√(h^2+k^2+l^2)/(2sinθ)
となります。
128yenさんの場合、立方晶系の002反射であれば、h=0,k=0,l=2を代入ということになり、結果として、
「nの値をそれぞれ2と4にすればいい」ということになります。

Bi2212については、私はその晶系がわかりませんのでなんともいえませんが、幾何学的な条件が上記の式に結果的に合致するのであればいいのですかねぇ~(謎)


消滅則については、結晶構造の対称性が重要なポイントになります。Bi2212の結晶対称性が、00偶数反射のみ出すようなものなのでしょうか。消滅則とは、体心立方構造の場合は、h+k+l=奇数の時は反射出ないというアレです。各空間群の対称性は、International Tables for X-ray Crystallography の第一巻をに書いてありますので、参考までに。

2dsinθ=nλと書いた場合のdは、面間隔であって格子定数ではありません、おそらく。
上の式は、面間隔がdの反射面(h k l)によるn次のブラッグ反射と読みます。
または、
2(d/n)sinθ=λ
と書き換え、面間隔が(d/n)の反射面(nh nk nl)による1次のブラッグ反射と読みます。
格子定数とは、ブラベー格子を表記するために必要な値のことで、平行六面体の3つの辺の長さと、それらのなす3つの角からなります。ブラベー格子の対称性が上がるとこのパラメータの数は少なくなり、立方晶系の場合は、1つ辺の長さのみであ...続きを読む

Q波長(nm)をエネルギー(ev)に変換する式は?

波長(nm)をエネルギー(ev)に変換する式を知っていたら是非とも教えて欲しいのですが。
どうぞよろしくお願いいたします。

Aベストアンサー

No1 の回答の式より
 E = hc/λ[J]
   = hc/eλ[eV]
となります。
波長が nm 単位なら E = hc×10^9/eλ です。
あとは、
 h = 6.626*10^-34[J・s]
 e = 1.602*10^-19[C]
 c = 2.998*10^8[m/s]
などの値より、
 E≒1240/λ[eV]
となります。

>例えば540nmでは2.33eVになると論文には書いてあるのですが
>合っているのでしょうか?
λに 540[nm] を代入すると
 E = 1240/540 = 2.30[eV]
でちょっとずれてます。
式はあっているはずです。

QXRDの2θ/θ法について教えてください。

XRDの2θ/θ法とはいったいなんなのですか。

よろしくお願いします。

Aベストアンサー

X線を試料水平方向に対してθの角度で入射させ、
試料から反射して出てくるX線のうち、
入射X線に対して2θの角度のX線を検出し、
θに対するその強度変化を調べる手法。
(入射X線源は固定して、試料をθ動かし、検出器を2θ動かす)

このとき、θを細かく変えて(例えば20°から70°)その強度変化を調べると、Bragg条件
2d sin(θ) = nλ (λはX線の波長、dは結晶の原子面間隔。nは整数)
を満たすときにX線強度が強まるので、Braggの式から面間隔がわかり、最終的には試料の結晶構造がわかります。

詳しくは専門書をご覧ください。例えば
カリティ著「X線回折要論」(アグネ)
はわかりやすい気がします。


人気Q&Aランキング