利用規約の変更について

テイラー展開の剰余項とはどういうものなんですか?なにを意味しているんですか?またテイラー展開自体をうまく理解する、分かりやすく解説している良いサイトはありませんか?

A 回答 (2件)

>テイラー展開の剰余項とはどういうものなんですか?なにを意味しているんですか?



この定理における剰余項は、この項だけが規則性から外れているものです。この剰余項は関数が多項式で近似できるかどうか重要な役割を演じます。


>またテイラー展開自体をうまく理解する、分かりやすく解説している良いサイトはありませんか?

やはり、ウィキペディアでしょう。いかにURLを挙げておくので参考にしてみてください。

一言で言ってしまうと、関数f(x)をxの多項式で近似することを考えたものです。


http://yukai.jp/~rwf/note/math/taylor/taylor.html

参考URL:http://ja.wikipedia.org/wiki/%E3%83%86%E3%82%A4% …
    • good
    • 1
この回答へのお礼

回答ありがとうございます。参考にします。

お礼日時:2005/06/18 20:24

Google で テイラー展開 をキーワードに検索して下さい.どれが分かりやすいかは,勉強する方のレベルや感性にもよるので,御自分

で分かりやすそうなサイトを探してみて下さい.
    • good
    • 0
この回答へのお礼

回答ありがとうございます。

お礼日時:2005/06/18 20:23

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qn次導関数の求め方

x^3・sinxのn次導関数を求めたいんですけどやり方がよくわかりません。これはライプニッツの公式をつかうらしいんですけど…帰納法じゃできないんですか?あとよろしければライプニッツを使った解法もおしえてもらえればうれしいです。よろしくお願いします。

Aベストアンサー

合成関数の微分の公式
D(fg)=D(f)g+fD(g)
から何回か微分を行い,結果なり関係式なりを適当に推測して,それを帰納法を使って証明する方法でも別に問題ありません.

ライプニッツの公式は,2項定理
(a+b)^n=Σ[k=0,n]C[n,k]a^k*b^(n-k) (C[n,k]はnCkのこと・・・掲示板では見にくいので)
の「微分バージョン」みたいなもので
D^(n)(fg)=Σ[k=0,n]C[n,k]D^(k)f*D(n-k)g (D^(k)はk階微分のこと)---(*1)
というように合成関数の微分公式をn階微分まで拡張したものです.この公式を使えば推測して帰納法で証明しなくても一気に結果を求めることができます.

とはいうものの,実際この公式を適用するためには(*1)の右辺を見ればわかるように,個々の関数fとgについての1~n階微分までの情報はあらかじめ知っている必要があります.
この問題では個々の関数の微分は下のように
x^3 → 3x^2 → 6x→ 6 →0(以降すべて0)
sin(x) → cos(x) → -sin(x) → -cos(x) → …(以降繰り返し)---(*2)
簡単に求められます.しかもx^3の方は4次以上の微分は0なので,f=x^3, g=sin(x)とおくと(*1)の右辺でk=4以降の項は出てきません.すなわち,
D^(n)(x^3*sin(x))=x^3*D^(n)(sin(x))+C[n,1]*3x^2*D^(n-1)(sin(x))+C[n,2]*6x*D^(n-2)(sin(x))+C[n,3]*6*D^(n-3)(sin(x))
となります.sin(x)の微分は(*2)よりまとめて
D^(n)(sin(x))=sin(x-nπ/2)
とかけますので,
D^(n-1)(sin(x))=sin(x-nπ/2+π/2)=cos(x-nπ/2)
D^(n-2)(sin(x))=cos(x-nπ/2+π/2)=-sin(x-nπ/2)
・・・
のように変形しておけば,最終的に
D^(n)(x^3*sin(x))=x^3*sin(x-nπ/2)+3nx^2*cos(x-nπ/2)-3n(n-1)x*sin(x-nπ/2)-n(n-1)(n-2)*cos(x-nπ/2)
となることがわかります.

合成関数の微分の公式
D(fg)=D(f)g+fD(g)
から何回か微分を行い,結果なり関係式なりを適当に推測して,それを帰納法を使って証明する方法でも別に問題ありません.

ライプニッツの公式は,2項定理
(a+b)^n=Σ[k=0,n]C[n,k]a^k*b^(n-k) (C[n,k]はnCkのこと・・・掲示板では見にくいので)
の「微分バージョン」みたいなもので
D^(n)(fg)=Σ[k=0,n]C[n,k]D^(k)f*D(n-k)g (D^(k)はk階微分のこと)---(*1)
というように合成関数の微分公式をn階微分まで拡張したものです.この公式を使えば推測して帰納法...続きを読む

Q剰余項の収束について

sinxをマクローリン展開したときの剰余項
R[n]={{f(c)}~(n)/n!}*x^n
={sin(c+nπ/2)/n!}*x^n
が、n→∞としたときに0に収束することを示したいです。
-1≦sin(c+nπ/2)≦1 だから、sin(c+nπ/2)は、極限に大きな影響は与えないことがわかります。
少ない脳みそで考えてみましたが、その後どうやっていいのかさっぱりわかりません^^;
すみませんが教えてください。

Aベストアンサー

m>|x|となる正の整数mを選びます。
n>>mであるとして、
n!=1*2*・・・*(m-1)*m*(m+1)*・・・*n>m!*m^(n-m+1)
となります。
よって、
0 <= |x^n/n!| < |x^n/{m!*m^(n-m+1)}| = |x^m/m! * (x/m)^(n-m+1)}|
となります。
x^m/m!は有限の定数であり、|x/m|<1であることから上式の右辺はn→∞で
"0"に収束します。
x^n/n!は0に絶対収束します。

QTaylor展開の剰余項::LagrangeとCauchyの形で

タイトル通りなんですが、
Taylor展開の剰余項(LagrangeとCauchy)の基本の形を教えて欲しいのですが。。
ネットでも調べてみたのですが、載ってるHPにヒットしませんでした(T_T)
しかも、Taylor展開も知っている剰余項と異なるのが表示されていたりして、パニくってます。

パソコン上では表示するのが大変ですが、どうか、お願いします。

Aベストアンサー

参考程度に
テーラの定理
f(b)=f(a)+(b-a)f'(a)+(b-a)^2/2!f''(a)
+・・+(b-a)^(n-1)/(n-1)!f'(n-1)(a)+Rn

1. テーラの余剰項
Rn={(b-a)^n/n!}f'(n)(x1)
{註:f'(n) はn回微分の意味、x1はaとbの間の値,
Rn=(b-a)^n*kと置けば、k=(1/n!)f'(n)(x1)}

2. Lagrangeの余剰形式
1.で(x1-a)/(b-a)=θ と置けば、
x1=a+θ(b-a), 1>θ>0
Rn={(b-a)^n/n!}f'(n){a+θ(b-a)},
1>θ>0
3. cauchyの余剰形式
Rn={(b-a)^n/(n-1)!}(1-θ)^(n-1)f'(n){a+θ(b-a)},
1>θ>0
{註:Rn=(b-a)*k とおいた場合}
ということでしょうかね。

Qarcsinのマクローリン展開について

arcsinxのマクローリン展開は、どのようにすればよいのでしょうか?

Aベストアンサー

マクローリン級数展開

Q積分で1/x^2 はどうなるのでしょうか?

Sは積分の前につけるものです
S dx =x
S x dx=1/2x^2
S 1/x dx=loglxl
まではわかったのですが
S 1/x^2 dx
は一体どうなるのでしょうか??

Aベストアンサー

まず、全部 積分定数Cが抜けています。また、積分の前につけるものは “インテグラル”と呼び、そう書いて変換すれば出ます ∫

積分の定義というか微分の定義というかに戻って欲しいんですが
∫f(x)dx=F(x)の時、
(d/dx)F(x)=f(x)です。

また、微分で
(d/dx)x^a=a*x^(a-1)になります …高校数学の数3で習うかと
よって、
∫x^(a-1)dx=(1/a)*x^a+C
→∫x^adx={1/(a+1)}*x^(a+1)+C
となります。

つまり、
∫1/x^2 dx=∫x^(-2)dx
={1/(-2+1)}*x^(-2+1)+C
=-x^(-1)+C
=-1/x+C

です。

Qe^xを微分するとe^xになる理由

大学1年のものです。

(e^x)'=e^xの証明がわかりません。
高校で習ったような気もしますが、習ってないような気もします。

ここの過去の質問も見させてもらったところ、2つほど見つけたのですが、

1)
y=e^x
logy=x
(1/y)y'=1
よって  y'=y=e^x



2)  e^xを無限級数に直して微分



1)の場合d(logx)/dx=1/x…(*)を利用していますが、(*)は(e^x)'=e^xを利用せずに証明できるのでしょうか?

2)の場合、e^xを無限級数に直すためには、テーラー展開をしないとダメなような気がするのですが、テーラー展開をするときに(e^x)'=e^xを利用しなければならないような気がします。



1)、2)とも(e^x)'=e^xの証明に(e^x)'=e^xを利用しているとすればこれらは意味を成さないような気がするのですが…


微分の定義に沿って証明しようともしましたが、

(e^x)'=lim{h→0}(e^x((e^h)-1)/h)

となり、ここで行き詰ってしまいました。



(e^x)'=e^xはなぜ成り立つのでしょうか?
よろしくお願いします。

大学1年のものです。

(e^x)'=e^xの証明がわかりません。
高校で習ったような気もしますが、習ってないような気もします。

ここの過去の質問も見させてもらったところ、2つほど見つけたのですが、

1)
y=e^x
logy=x
(1/y)y'=1
よって  y'=y=e^x



2)  e^xを無限級数に直して微分



1)の場合d(logx)/dx=1/x…(*)を利用していますが、(*)は(e^x)'=e^xを利用せずに証明できるのでしょうか?

2)の場合、e^xを無限級数に直すためには、テーラー展開をしないとダメなよ...続きを読む

Aベストアンサー

orangeapple55さんのおっしゃるとおり、「一般的には」1)も2)も(e^x)'=e^xを用います。
従って1)にも2)にも頼らず、定義によって微分することにしましょう。

(e^x)'
=lim[h→0](e^x((e^h)-1)/h)
=e^xlim[h→0]{((e^h)-1)/h}

となるので、結局問題は
lim[h→0]{((e^h)-1)/h}……(*)
の収束性に帰着します。

そこで、この極限について考察してみましょう。以下、適宜e^xをexp(x)と表現します。

まず、h>0のときについて考えましょう。
このとき、exp(h)>1ですから実数t>0を用いて
exp(h)=1+1/t……(1)
と表すことができます。

指数関数は連続ですから、
lim[h→0]exp(h)=1
ゆえに
lim[h→0]t=∞
つまり、
h→0のときt→∞……(2)
が成り立ちます。

また、h=log(exp(h))を利用すると、(1)よりh=log(1+1/t)……(3)
ですから、(1)、(2)、(3)より、(*)はtを用いて
(*)=lim[t→∞]1/{tlog(1+1/t)}=lim[t→∞]1/log{(1+1/t)^t}
と書き直すことができます。

さて、対数関数も連続ですから、
lim[h→0]log{(1+1/t)^t}=log{lim[h→0]{(1+1/t)^t}}です。
そこで、lim[h→0]{(1+1/t)^t}に注目しましょう。

nを自然数とします。そうすれば、二項定理を用いて
(1+1/n)^n
=1 + nC1*(1/n) + nC2*(1/n)^2 + …… + (1/n)^n
=1 + 1 + (1-1/n)/2! + (1-1/n)(1-2/n)/3! + …… + (1-1/n)(1-2/n)……(1-(n-1)/n)/n!……(4)
と展開できます。

(1+1/(n+1))^(n+1)
を同じように展開すると、(1+1/n)^nに比べて
イ:項数が増え
ロ:個々の項が増大する
ことが容易に確認できますから、(1+1/n)^nはnが増すと単調増加します。
しかも、(4)より、

(1+1/n)^n
<1 + 1/1! + 1/2! + …… 1/n!
<1 + 1 + 1/2 + 1/2^2 + …… + 1/2^(n-1)
<1 + (1-(1/2)^n)/1-1/2
<3

ですから、(1+1/n)^nは上に有界(どんなnをとってきても(1+1/n)^n<MとなるMが存在する。今の場合例えばM=3)です。

ここで公理を使います。
「上に有界かつ単調増加な数列は収束する」
これは実数の連続性を認めないと出てこない公理なのですが、今はとりあえず認めることにしましょう。そうすると、

「(1+1/n)^nは3以下のある値に収束する」

ことが分かります。これを私たちはeと定義したのでした。
以下、証明は省きますが、xを実数としても、(1+1/x)^xはやはりx→∞でeに収束することは容易に類推できると思います。
(証明が気になるなら図書館で解析に関する本を探してみてください。おそらく載っていると思います)

さて、このeを底にとった対数関数を自然対数logと決めたのですから、結局のところ
log{lim[h→0]{(1+1/t)^t}}=log(e)=1
が出ます。よって、(*)=1、つまり、(e^x)'=e^xを示すことができました。h<0についても同様です。

適当なことを言いたくなかったので、長くなってしまいました。すいません。
整理すると、
(1)(1+1/x)^xはx→∞で2.71ぐらいに収束する(収束値をeと名付ける)
これが一番最初にあります。これを用いて、
(2)e^xを指数関数とする
(3)logxをその逆関数とする
これが定義されます。この順番を理解していないと、おかしな循環論法に陥ります。

(注:冒頭で「一般的には」と書いたように、これと違った定義の仕方もあります。
たとえばe^x=1+x/1+x^2/2!+……と先に指数関数を定義してしまう方法。
これらに関しても、順番に注意すれば循環論法に陥らずに公理のみから件の命題を証明することができるでしょう)

最後に、僕は以上でいくつか仮定をしています。
対数関数が連続であること。指数関数が連続であること。
実数の連続性。(1+1/x)^xはxが実数であってもx→∞でeに収束すること。
これらの証明(あるいは公理の必然性)をあたってみることは決して無駄ではないと思います。

orangeapple55さんのおっしゃるとおり、「一般的には」1)も2)も(e^x)'=e^xを用います。
従って1)にも2)にも頼らず、定義によって微分することにしましょう。

(e^x)'
=lim[h→0](e^x((e^h)-1)/h)
=e^xlim[h→0]{((e^h)-1)/h}

となるので、結局問題は
lim[h→0]{((e^h)-1)/h}……(*)
の収束性に帰着します。

そこで、この極限について考察してみましょう。以下、適宜e^xをexp(x)と表現します。

まず、h>0のときについて考えましょう。
このとき、exp(h)>1ですから実数t>0を用いて
exp(h)=1+...続きを読む

Qtanxのマクローリン展開について

「f(x)=tanxのマクローリン展開をn=3まで求めなさい」という問題について、悩んでいます。

f(x)=sin(x)やf(x)=cos(x)の例を参考に、f'(0)、f''(0)、f'''(0)より級数形式の一般項を求めようとしました。

tanx=sinx/cosxなので、f'=1/cos^2xですが、このままf''、f'''と求めるのは大変面倒な気がします。

最終的な回答は、x+x^3/3+2x^5/15+34x^7/315らしいのですが、こちらから一般項に辿り着けません。

わかる方がいらっしゃいましたら、教えてください。
できましたら、途中の進め方を詳しくお願い致します。

Aベストアンサー

1/(cosx)^2=1+(tanx)^2という公式をフル活用します。
tanxをxで微分すると
(tanx)'=f'(x)=1/(cosx)^2=1+(tanx)^2
となります。
あとは
f''(x)=2*(tanx)*(tanx)'=2tanx+2*(tanx)^3
f'''(x)=2(tanx)'+2*3*(tanx)^2*(tanx)'=2+8tanx^2+6(tanx)^3
といった感じで、f''(x)、f'''(x)、…は計算できます。

Q偏微分の記号∂の読み方について教えてください。

偏微分の記号∂(partial derivative symbol)にはいろいろな読み方があるようです。
(英語)
curly d, rounded d, curved d, partial, der
正統には∂u/∂x で「partial derivative of u with respect to x」なのかもしれません。
(日本語)
ラウンドディー、ラウンドデルタ、ラウンド、デル、パーシャル、ルンド
MS-IMEはデルで変換します。JIS文字コードでの名前は「デル、ラウンドディー」です。

そこで、次のようなことを教えてください。
(1)分野ごと(数学、物理学、経済学、工学など)の読み方の違い
(2)上記のうち、こんな読み方をするとバカにされる、あるいはキザと思われる読み方
(3)初心者に教えるときのお勧めの読み方
(4)他の読み方、あるいはニックネーム

Aベストアンサー

こんちには。電気・電子工学系です。

(1)
工学系の私は,式の中では「デル」,単独では「ラウンドデルタ」と呼んでいます。あとは地道に「偏微分記号」ですか(^^;
その他「ラウンドディー」「パーシャル」までは聞いたことがあります。この辺りは物理・数学系っぽいですね。
申し訳ありませんが,あとは寡聞にして知りません。

(3)
初心者へのお勧めとは,なかなかに難問ですが,ひと通り教えておいて,式の中では「デル」を読むのが無難かと思います。

(4)
私はちょっと知りません。ごめんなさい。ニックネームは,あったら私も教えて欲しいです。

(2)
専門家に向かって「デル」はちょっと危険な香りがします。
キザになってしまうかどうかは,質問者さんのパーソナリティにかかっているでしょう(^^

*すいません。質問の順番入れ替えました。オチなんで。

では(∂∂)/

Q行列の消去法のコツなど教えてください。

只今、学校にて行列を習っているわけですが、最近行列を使った消去法を習い始めました。

たとえば

3  1 -7  0
4 -1 -1  5
1 -1  2  2

このような行列があったとします。
習った方法は、
(1)一つの行に0でない数をかける。
(2)一つの行にある数をかけたものを他の行に加える。
(3)二つの行を交換する。

1  0  0  3
0  1  0  5
0  0  1  2
このような式に変形してx=3,y=5,z=2みたいな感じにするということでしたが、

今回教えていただきたいことは、
→1度に前述の3つの式を何回も使っていいのか。
→うまく変形するコツ。

の二つです。

やり方自体はなんとなくわかるのですが、単位行列に持っていくまでの手順がイマイチ難しくわからないので、よろしければご教授願います。

2月頭辺りからテストなのでズバリを突いて欲しいと思います。

よろしくお願いします。

Aベストアンサー

→1度に前述の3つの式を何回も使っていいのか。
何回でも使っていいです。1+1=2と1+1+1-1+1-1+1-1=2が等価なのと同じことと思ってください。

→うまく変形するコツ。
”うまく”はないですけど、初心者向けの解法のコツみたいなものとして、参考までに。
(1)n列目のn行を1にする。
(2)「n列の他の行の数」を、(1)で作った1に-(「n列の他の行の数」)をかけてたして0にする。
(3)単位行列になるまで(1)~(2)を繰り返す。
※nは1~行列の次数(2次正方とか3次正方とかの2,3)です。

Q上界と上限と最大値の違い

上界と上限と最大値の違いはなんでしょうか
なんとなく違う気はするのですが、うまく説明することができません
これらはどのように使い分ければよいのでしょうか
明確な定義などはあるのでしょうか

Aベストアンサー

>明確な定義などはあるのでしょうか

うーーん、上界とか上限って言葉は高校数学までには出てこないですよね。
「その言葉を知っているが定義を知らない」という状況が思いつきません。
後学のため、「どうしてその言葉を知っているのか」のか教えていただければ幸いです。



定義は、次の通りです。

・xがAの上界 ⇔ すべてのAの要素aについて、a≦x
 つまり、xより大きいyについても a≦y となるのでyもAの上界になります。

・xがAの最大値 ⇔ すべてのすべてのAの要素aについて、a≦x かつ、 xはAに含まれる(xはAの元である)
 つまり、Aの元の中で一番大きいヤツです。当然1個しかありません。
 上界があっても考えている世界(全体集合)によって、最大値がないときがあります。実数の世界で、A={x;xは実数 かつ x<1} なんてとき、Aに最大値はありませんね。
 自然数や整数の世界では上界があるなら最大値があります。

・xがAの上限 ⇔ xはAの上界の最小値
 上界があっても考えている世界(全体集合)によって、上限がないときがあります。有理数の世界で、A={x;xは有理数 かつ x^2<2} なんてとき、Aに上限はありません。
 実数の世界では上界があるなら上限があります。

>明確な定義などはあるのでしょうか

うーーん、上界とか上限って言葉は高校数学までには出てこないですよね。
「その言葉を知っているが定義を知らない」という状況が思いつきません。
後学のため、「どうしてその言葉を知っているのか」のか教えていただければ幸いです。



定義は、次の通りです。

・xがAの上界 ⇔ すべてのAの要素aについて、a≦x
 つまり、xより大きいyについても a≦y となるのでyもAの上界になります。

・xがAの最大値 ⇔ すべてのすべてのAの要素aについて、a≦x ...続きを読む


人気Q&Aランキング

おすすめ情報