立方体のある面のでる確率は1/6。
では辺がa,b,cの直方体のそれぞれの面のでる確率は?
(例えば1:1:10の直方体はほとんど立ちませんよね??)

このQ&Aに関連する最新のQ&A

A 回答 (9件)

あの・・・



http://www.okweb.ne.jp/kotaeru.php3?q=153311
に書いたんですが、
エネルギ保存と反発係数(エネルギの放散)で、どうかな・・と

高校レベルですが・・
    • good
    • 0
この回答へのお礼

ありがとうございます。
とりあえず、数学カテゴリは閉じて、物理カテゴリに移りますか。

お礼日時:2001/10/22 22:40

nagata様へ、(つっこみありがとうございます。



長方形そのものの重心は、対角線の交点にありますから、重心と接地点を結んだ直線が鉛直方向からずれた方向に倒れます。
    • good
    • 0

>「図形」だけで考えれば、長方形の対角線(接地した頂点)が傾いたほうに倒れることになります。



ホントにそうでしょうか。地面に対して対角線が垂直になるようにそっと長方形を立てたときに
対角線の右側が上の方がふくれてて左側が下の方にふくれてたら必ず右に倒れそうな気がするんですが。
てこの原理で支点から遠い所に力が加わった方が大きな力になりますよね。

この回答への補足

そっと立てたら、やっぱり重心が最も高い位置(すなわち対角線)からずれた方向にいきませんか。

補足日時:2001/10/18 20:37
    • good
    • 0

「図形」だけで考えれば、長方形の対角線(接地した頂点)が傾いたほうに倒れることになります。

問題は、
「倒れていったまま、隣の頂点が接地したところで止らずに、回転する」こと。
  (サイコロ、というものは、そもそも転がるもので、転がさずに目を出してい
   たらインチキですね)

最後の「ひと山」が、長辺を持ち上げて短辺で止る、というのはかなり確率としては低いです。同じ「1:3」でも、投げ方、材質などで違うでしょうね。重力加速度も考慮して、計算しないと。・・ああ、計算はパス!

立方体の場合、どの面も条件が同じなので、1/6になります。「いいとも」のサイコロみたいに、角のまるいサイコロでも、丸いところで止ることがなければ1/6です。直方体で細長いサイコロの場合、あれだけ角を丸くしたら、縦長にとまる確率はほとんどないと思います。

この回答への補足

さっきのコメントで1→3、3→1が逆でした。
次の状態に移るためには最大位置に達せなければいけないと考えました。

補足日時:2001/10/18 20:41
    • good
    • 0
この回答へのお礼

なるほど。
1:3の長方形で、重心のもっとも高くなるところは√10/2。
底辺が1から3に移るときに必要な位置エネルギEa(相対値)は、
 Ea=√10/2-1/2
底辺が3から1に移るときに必要な位置エネルギEb(相対値)は、
 Eb=√10/2-3/2

 ∴ Eb/Ea=0.075

だんだん実験値(0.04:試行数100ですが。)に近づいてきました。
この考え方どう思います?

お礼日時:2001/10/18 20:36

直方体で考えるのはあまりに難しいのでとりあえず2次元で考えてみませんか。


no.1の回答の捕捉にcが十分長いやつで試した,とありますがそれでならまだ
望みがありそうな気がします。直方体はそのあとと言うことでどうでしょうか。

この回答への補足

はい、是非お願いします。定性的な考え方だけでも教えて下さい。

補足日時:2001/10/17 20:55
    • good
    • 0

気になって、またきました。



>短辺側の落ちたとき、突き刺さって、倒れないことも考えられますよね?
について、
突き刺さった場合、これはたぶん、「斜め」になっているわけだから、「目」としてはノーカウントですかね。立方体のサイコロを振ったとき、ちゃんと立っていないと(寝ている、ともいえるのですが)、ノーカウントでしょう。

この回答への補足

だんだん質問の意図するところからずれてきたようなので、
あまり特殊な環境は考えず、イカサマもなしとすれば、無作為につかんで振れば,均一な立方体は物理常数、投げ方によらず、1/6になるであろうという前提に立って、これと同じ環境、材質で直方体を振れば、いきなり物理常数、投げるときの速度(回転方向も含めて)が影響しだすのか?
と質問を変えましょうか。

補足日時:2001/10/16 21:24
    • good
    • 0

>数学的確率だけではなく、慣性モーメントなども考える必要はないのでしょうか



もちろん、バウンドすることはかんがえないといけません。最初にお断りしています。
「確率がかわる」とか、「確率だけでは」という言い方ですが、これは、確率計算にバウンドその他の条件を入れていないだけで、「そういう前提のもとでの確率」と思ってください。確率どおりにいかない、というのは、偶然がつづいているか、イカサマなどの要因があるか、ということです。床の弾性、材質、おとしかた、すべてを考慮した確率計算ができるならば、試行回数をふやせば、ほぼ確率どおりの結果になるはずです。
    • good
    • 0

 回答ではないのですが、その物体の重量や、落とす角度、落とす方法によって、確率はかわりますよね。


 空気抵抗とかまで考えれて、その物体が非常に重いものなら、かえって、短辺側の落ちたとき、突き刺さって、倒れないことも考えられますよね?
 そうすると、短辺側の確率がかなり上がるのではないでしょうか?
    • good
    • 0
この回答へのお礼

なるほど。
単位面積当りの重量も違うのですね。
ということは、弾性等も考慮しなくてはいけないのかな?
短辺側がより弾みやすくなり、確率低下の原因に?
(masakajiさんの考察とは逆ですが)
やはり数学というより物理的考察が必要みたいですね

お礼日時:2001/10/14 21:12

計算が面倒なので、省略。


重心をPとすれば、斜めに落ちたとき、Pが辺の真上からずれたほうに倒れる、と考えてみましょう。(実際は、回転したりバウンドしたりするので、そうはいかない)

一方向から見た場合、長方形の外接円を描いて、対角線によってできる中心角の比になるでしょうか。(これを両方向。直方体の「外接球」を描くことになりますか・・)

計算するとすれば、三角比を使うことになるでしょうが、そこまで計算しても・・・。

この回答への補足

やっぱり立体角の比ですか。
簡単のためにa:b=1:3、cは非常に長いもので、試してみました。
中心角の比からは短辺側は約20%(2/π*tan-1(1/3))
の確率ででるはずなのですが、
100回の試行で短辺で立った回数は4回(4%)。
この試行数ではなんともいえないかもしれませんが、
数学的確率だけではなく、慣性モーメントなども考える必要はないのでしょうか。

補足日時:2001/10/14 09:09
    • good
    • 0

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q大きさの異なる4個の立方体A,B,C,Dがあり、それぞれの立方体の各面

大きさの異なる4個の立方体A,B,C,Dがあり、それぞれの立方体の各面を青、黄、赤のペンキで次のように塗り分けた。
今、この4個の立方体を床に転がした時、青又は赤の面が床に接している立方体が、少なくとも1個ある確立は?
     青     黄     赤
A    3      2      1
B    1      3       2
C    1      4         1
D    2      2         2
 

答え 26/27  

どの様に解けば良いのでしょうか?

表がずれてしまい申し訳ありません。

Aベストアンサー

こんにちわ。

「少なくとも 1つ」フレーズが出てくる問題は、たいていの場合「余事象(問われている事象と反対の事象)」を考えることで求めることができます。
#1さんも書かれているように、いまの場合は「すべて黄色になる」確率を求めることができれば答えはでます。

Aという事象と Aの余事象:A 'は、同時には起こらず、2つ合わせると全部の事象になるのですから、
(Aの確率)+(A 'の確率)=○ 
となります。
○に入る数字は分かりますよね。^^

Q1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1

この数式を求める式を教えてください。
よろしくお願いします。

Aベストアンサー

1/2+(1/2)*(-1)^n
n=0,1,2,...

Q1立方メートルは1立方センチメートルの1000倍のようですが 1立方センチメートルは1㎝*1㎝*1㎝

1立方メートルは1立方センチメートルの1000倍のようですが
1立方センチメートルは1㎝*1㎝*1㎝
1立方メートルは100㎝×100㎝×100㎝
で1000000倍になるのではないですか?
なぜ1000倍なのでしょうか?

Aベストアンサー

はじめまして

おっしゃるとおり立方メートルは100㎝×100㎝×100㎝で1000000倍になります。

>1立方メートルは1立方センチメートルの1000倍のようですが

これが間違っています。平方と立方が混同されているのではないでしょうか。

Q三角錐と三角柱と直方体の頂点、辺、面

三角錐と三角柱と直方体の頂点、辺、面の個数を調べたときに、どんな法則がありますか?

Aベストアンサー

蛇足かもしれませんが、オイラーの法則について、塾で教えていたときの中2の幾何の教材の読み物ページにこんなものを載せていました。(ちなみに私はトポロジーのお話自体はまったく知らない素人です^^;)あくまで直感勝負で。(笑)

(1)まず、立体の面を1つ取り除き、その立体を「ぶにゅ~っと」つぶして平面にする。
(2)そこから辺を1つずつ取り除く。そうすると、
(2-1)面が1つなくなるか、
(2-2)頂点が1つなくなるか、のどちらか1つの現象が起こる。
(3)つまり(頂点)-(辺)+(面)の値はこの作業により不変であることがわかる。
(4)(2)の作業を繰り返すと、すべての辺を取り除く直前で、●---●(頂点-辺-頂点)という図になる。ここで最後の作業として(2-2)が起こり、頂点が1つだけ残る。
(5)(4)の頂点1つと(1)ではじめに取り除いた面1つも考えて、(頂点)-(辺)+(面)=2が成り立つ。

確かなんとなく、大きな箱の上に小さな箱を乗せてくっつけ、鏡餅のような立体を作った場合は、面どうしをくっつけた数、というのもパラメータに入ってきていたような気がします。CADのシステムを組まれる方とかはこういう話にお強いのでしょうか?

蛇足かもしれませんが、オイラーの法則について、塾で教えていたときの中2の幾何の教材の読み物ページにこんなものを載せていました。(ちなみに私はトポロジーのお話自体はまったく知らない素人です^^;)あくまで直感勝負で。(笑)

(1)まず、立体の面を1つ取り除き、その立体を「ぶにゅ~っと」つぶして平面にする。
(2)そこから辺を1つずつ取り除く。そうすると、
(2-1)面が1つなくなるか、
(2-2)頂点が1つなくなるか、のどちらか1つの現象が起こる。
(3)つまり(頂点)-(辺)+(面)の値はこ...続きを読む

Q2,7,1,4,7,2,8,1,4,1,6,..

初項を2、第2項を7とします
すべての項は一桁とします。
隣り合う項をかけてその結果を数列の最後につけていくとします
(説明が下手でごめんなさい。。。)
つまり
2,7,1,4,7,2,8,1,4,1,6,...
といった具合です。
これが6を無限個含むことを示せという問題なんですが、見当がまったくつかず。。。
ちょっと思いついたのは偶数をかけるとどんな数字でも一桁目は偶数になるので、偶数は無限個あるというのだけで、、、
規則性が見えるかなとおもっていろいろ書き出したのですが、何もわからず。。。

ヒントでもいいのでお願いします

Aベストアンサー

> 隣り合う項をかけてその結果を数列の最後につけていくとします
> 2,7,1,4,7,2,8,1,4,1,6,...

> といった具合です。

どういう規則なのか、さっぱり分からんですね。もしかして、この例が間違っているんじゃないでしょうか?

 仮に、この例が間違いだとして、「隣り合う項をかけてその結果を数列の最後につけていく」をやってみると
27
2.714
27.147
271.474
2714.7428
27147.42828
271474.28288
2714742.828816
27147428.2881616
が正しいのだとしましょう。("."は掛け算をやった位置を表しています)

 さて、「数列には6が高々有限個しか現れない」と仮定すると、数列のある場所N項目から以降には6が一つもないような、そういうNが存在しなくてはならない。

 一方、数列中にひとたび(1616)が現れると、それより後ろに(666)が出て来る。
 (666)が現れると、それより後ろに(363636)が出て来る。
 (363636) が現れると、それより後ろに (1818181818) が現れ、さらにその後ろに (888888888) が現れ、さらにその後ろに(6464…6464) が出て来る。
 (6464…6464) が現れると、それより後ろに (2424…24) が現れ、さらにその後ろに (88…8) が現れ、さらにその後ろに (6464…6464) が出て来る。
 (6464…6464) が現れると、それより後ろに (2424…24) が現れ、さらにその後ろに (88…8) が現れ、さらにその後ろに (6464…6464) が出て来る。
  :
 ループです。つまり、どこまで行っても、それより後ろに(6464…6464)という部分が必ず存在する。

 だから、「数列のある場所N項目から以降には6が一つもないような、そういうN」は存在しない。
 

> 隣り合う項をかけてその結果を数列の最後につけていくとします
> 2,7,1,4,7,2,8,1,4,1,6,...

> といった具合です。

どういう規則なのか、さっぱり分からんですね。もしかして、この例が間違っているんじゃないでしょうか?

 仮に、この例が間違いだとして、「隣り合う項をかけてその結果を数列の最後につけていく」をやってみると
27
2.714
27.147
271.474
2714.7428
27147.42828
271474.28288
2714742.828816
27147428.2881616
が正しいのだとしましょう。("."は掛け算をやった位置を表しています)

 さ...続きを読む


人気Q&Aランキング

おすすめ情報