Vc=E[exp(-t/RC)] って変形すると、直線の式にできます?
ちなみに、Vcは電圧で Vc=Eで、tは時間 RC=τ です
よろしくお願いします

このQ&Aに関連する最新のQ&A

A 回答 (1件)

両辺の対数をとればよろしい.



自然対数をとれば
ln Vc = ln E - t/τ
ですから,横軸にt,縦軸に ln Vc でグラフを描けば直線になります.
傾きからτ,縦軸の切片から ln E がわかります.

常用対数(10 をつけると見にくいので,単に log と書くことにします)なら,
log Vc = log E - (log e) (t/τ)
です.
傾き,切片の話は自然対数の時と同じようなことです.

常用対数をとる計算をしないで済むように縦軸を常用対数で目盛ったのが
文房具屋で売っている片対数方眼紙です.
    • good
    • 0

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q物理の問題です。 座標がx(t)=4t^3-6t^2で与えられる直線運動の時刻tにおける物体の瞬間的

物理の問題です。
座標がx(t)=4t^3-6t^2で与えられる直線運動の時刻tにおける物体の瞬間的な速度v(t)の求め方がわかりません。
よろしくお願いいたしますm(._.)m

Aベストアンサー

速度=移動量/時間ですよね

時刻tから時刻t+Δtにおける座標の差分をΔtで割ります。Δtをゼロに近づけていくと時刻tにおける瞬間速度が出ます。
さて、上の計算って微分の定義その物ですよね。
位置→微分→速度→微分→加速度
逆に、
加速度→積分→速度→積分→位置
になります。
物理量って大概割ったり掛けたりして出すので、複雑な式で定義された場合でも微分積分使うととても楽に解けます。

Qi(t)=I・sin(ωt+θ)を複素数表示したら、i=I・e^jθ

i(t)=I・sin(ωt+θ)を複素数表示したら、i=I・e^jθ
になると書いてあったのですが、どうしたらこうなるのかが分かりません。
分かりやすく教えて下さい。

Aベストアンサー

i(t)=I・sin(ωt+θ)が与えられた時
I・cos(ωt+θ)も同時に取り上げ
i=I・cos(ωt+θ)+j・I・sin(ωt+θ)
について考えます。
オイラーの公式により
i=I・e^j・(ωt+θ)
ωtの部分は周期ωの周期関数(正弦波)であることを示しているだけで、
交流理論においてはθの部分が大事であって、この部分だけで必要な議論ができることから
ωtの部分を省略して記述します。よって
i=I・e^j・θ

オイラーの式により
i=I・e^jθ=I(cosθ+jsinθ)=Icosθ+jIsinθ

Q電界の強さE=D/εとE=V/dの使い分け

電界の強さはE=D/ε(D:電束密度、ε:誘電率)とE=V/d(V:電圧、d:極板間隔)の2通りがありますが、以下の問題(電験3種過去問題)を解いていて意味が解らなくなりました。

問題(1):http://www.jikkyo.co.jp/kakomon/denken3_kakomon/h22/riron/h22r_no02.html
解答(1):http://www.jikkyo.co.jp/kakomon/denken3_kakomon/h22/riron/h22r_no02_kaisetsu.pdf
問題(2):http://www.jikkyo.co.jp/kakomon/denken3_kakomon/h21/riron/h21r_no02.html
解答(2):http://www.jikkyo.co.jp/kakomon/denken3_kakomon/h22/riron/h22r_no02_kaisetsu.pdf
問題(3):http://www.jikkyo.co.jp/kakomon/denken3_kakomon/h21/riron/h21r_no17.html
解答(3):http://www.jikkyo.co.jp/kakomon/denken3_kakomon/h21/riron/h21r_no17_kaisetsu.pdf

問題(1)では電界Eは誘電率と無関係に電極の形状と位置関係で決まっているのに
問題(2)、(3)では誘電率が影響していると解答にあります。
考えれば考えるほど混乱します。果たしてどちらなんでしょうか?

電界の強さはE=D/ε(D:電束密度、ε:誘電率)とE=V/d(V:電圧、d:極板間隔)の2通りがありますが、以下の問題(電験3種過去問題)を解いていて意味が解らなくなりました。

問題(1):http://www.jikkyo.co.jp/kakomon/denken3_kakomon/h22/riron/h22r_no02.html
解答(1):http://www.jikkyo.co.jp/kakomon/denken3_kakomon/h22/riron/h22r_no02_kaisetsu.pdf
問題(2):http://www.jikkyo.co.jp/kakomon/denken3_kakomon/h21/riron/h21r_no02.html
解答(2):http://www.jikkyo.co.jp/kakomon/denken3_kakomon/...続きを読む

Aベストアンサー

均一な電界なら、どちらも同じです。
計算に使う場合、どういう条件があるか(電束密度Dが一定、あるいは電位差が等しい、など、どのパラメータが先に決まるか)で、どの関係を使って計算するのが楽か、が決まる程度かと思います。

1.は平等電界で、電位差が決まっているのでVを使って計算するのが楽です。
3. は電極間を貫く電束(密度)が一定なので、Dを先に決めて計算するのが楽になります。

Q仕事関数E[J]=hν/e=hc/λe

仕事関数E[J]=hν/e=hc/λeが成り立つらしいのですがこれはなぜですか?

Aベストアンサー

光電効果を
「振動数 ν の光はエネルギーが E=hν の光子からなる」
で説明したのがアインシュタインじゃなかったっけ?

Q粒子のエネルギー E=(1/2)mv^2とE=hν

一般的に量子力学などでエネルギーを求める場合、波長λ=h/pよりp=h’k、(h’=h/2π)をE=p^2/(2m)に代入すると、≪E=(h’k)^2/(2m)≫となりますよね。
一方、粒子のエネルギーは【E=hν】とも表されます。速度v、振動数ν、としてv=νλ、λ=(2π)/kより『ν=(kv)/(2π)』となり、またλ=h/pよりmv=h/λとなる。これよりv=(h’k)/mを『』に代入し、さらに【】に代入するとE=(h’k)^2/mとなって、≪≫の式と違います。教科書では≪≫の式ですが、どのような条件で違いが生まれてくるのですか?

Aベストアンサー

> v=νλ
この表式での v は「位相速度」と呼ばれるものです。
量子力学において、波動関数の位相速度は粒子の速度とは一致しないことが知られています。

一方で、「群速度」と呼ばれるものが存在します。
これは、 v_g = ∂ω/∂k (ただしω=2πν)で定義される量です。
いまは ω=E/h'=h'k^2/2m ですから、v_g=h'k/m=p/mとなります。
(一方で位相速度は v=h'k/2mです)

位相速度は、いわば「平面波が移動する速度」です。
群速度は、「波束(空間的に局在した波)が移動する速度」です。
真空中の光などのように位相速度が波長に依らず一定になる場合は位相速度と群速度は一致しますが、
それ以外の場合には位相速度と群速度は異なります。
現実の粒子は波束で表現されると考えられるので、粒子の「速度」に対応するのは群速度の方です。

詳しくは「群速度」で検索してみてください。


人気Q&Aランキング

おすすめ情報