有限要素法により
渦電流解析を行っていますが、
異なる導電率を持つ媒体での境界付近の振る舞いが
よくわかりません。

三角要素を接合した二つの接点を境にして
導電率が異なる場合を考えてます。

離散化している時は、
接合部分の2節点はどちらの導電率と
考えればいいのですか?
それぞれの三角要素で、別個に導電率を
与えればよろしいのですか?
わかる方お願いします。


○__○
| /|
|/ |
○__○

A 回答 (1件)

電流を求める問題ですよね。


導電率は要素の値になると思います。

線型な有限要素近似は以下のように関数の和で表して
その関数の係数をパラメータとして積分関数の極値を
求める問題だと思います。
たとえば1次元の場合は
f(x)=Σf(x_i)△_i(x)
但し、
△i(x)
=(x-x_(i-1))/(x_i-x_(i-1))  (x_(i-1)< x < x_i)
 1  (x = 1)
 (x-x_(i+1))/(x_i-x_(i+1))  (x_i < x < x_(i+1))
 0  (それ以外)
という具合に一つの点x_iで1
隣接点x_(i-1),x_(i+1)で0になるように線を引っ張って、
点x_iのところに3角形ができるような関数の和で表したときに、
F(f(x_1),f(x_2),f(x_3),...,f(x_N))
=積分 G(f(x)) dx
で ∂F/∂f(x_i) = 0 (i=1,2,3,...,N)
となる係数の組{f(x_i)}を求めよう、
あるいは、G(f(x))=0 となるときに
積分 △_i(x)G(f(x)) dx = 0 (i=1,2,3,...,N)
となる係数の組{f(x_i)}をもとめよう
という考え方ですよね。

したがって、点の間で積分をします。
点の間の区間を要素という所以です。
つまり要素の値を使います。
もし、頂点(っていうんでしたっけ??)
にだけ値が与えられているような場合には
その区間を線型近似するんだと思います
(つまり、平均値ですね)。
    • good
    • 0
この回答へのお礼

お答えくださって有難う御座いました。

とりあえずチャレンジしてみようと思います。
どうしても解けなかったらまたよろしくお願いします。

かなり助かりました!

お礼日時:2001/11/01 21:05

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aと関連する良く見られている質問

Q複素数の三角不等式|z+w| <= |z|+|w|の証明について質問で

複素数の三角不等式|z+w| <= |z|+|w|の証明について質問です。
本に

シュヴァルツの不等式
(xu + yv)^2 <= (x^2 + y^2)(u^2 + v^2)
で、z = x+yi、w = u+viとすれば、
|Re(z w~)|   ←wだけ共役複素数
= |Re{(x+yi)(u-vi)}|
= |xu + yv|
<= √(x^2 + y^2)√(u^2 + v^2)
= |z||w|
と書くことができます。

…とあるのですが、
まず、そもそも何故、虚数Imのところは計算せずに
実数Reの部分だけを計算しているのか、意図が分かりません。

それと、|Re(z w~)|は何故いきなりwが共役複素数になってるんですか?
これは、|z|^2 = |z~|^2 = z z~ という性質と関係がありますか?
シュヴァルツの不等式が(xu + yv)^2と二乗していたので、こっちでも二乗した、ということですか?

そして、その後はRe z = (z+z~)/2を適用して|xu + yv|になるのは分かるんですけど、
<= √(x^2 + y^2)√(u^2 + v^2)
になった経緯が分かりません。
(xu + yv)^2 <= (x^2 + y^2)(u^2 + v^2) が二乗だったので
|xu + yv| <= √(x^2 + y^2)√(u^2 + v^2) は二乗をとって二乗根にした、ということですか?

三角不等式自体は別の教科書の複素数平面上に書かれた図で理解できているつもりです。
||z_1| - |z_2|| <= |z_1 + z_2| <= |z_1| + |z_2|
等号はO, OP1↑, OP2↑が一直線上にあり、
右の等号は、OP1↑, OP2↑が同じ向きのときであり、
左の等号は、OP1↑, OP2↑が反対向きのときである。
||z_1| - |z_2|| <= |z_1 - z_2| <= |z_1| + |z_2|
等号はO, OP1↑, OP2↑が一直線上にあり、
右の等号は、OP1↑, OP2↑が反対向きのときであり、
左の等号は、OP1↑, OP2↑が同じ向きのときである。
…というような図です。

いろいろ質問してすみません。どうか教えてください。お願いします。

複素数の三角不等式|z+w| <= |z|+|w|の証明について質問です。
本に

シュヴァルツの不等式
(xu + yv)^2 <= (x^2 + y^2)(u^2 + v^2)
で、z = x+yi、w = u+viとすれば、
|Re(z w~)|   ←wだけ共役複素数
= |Re{(x+yi)(u-vi)}|
= |xu + yv|
<= √(x^2 + y^2)√(u^2 + v^2)
= |z||w|
と書くことができます。

…とあるのですが、
まず、そもそも何故、虚数Imのところは計算せずに
実数Reの部分だけを計算しているのか、意図が分かりません。

それと、|Re(z w~)|は何故いきなりwが共役複素数になってるんですか?
これ...続きを読む

Aベストアンサー

落ち着きなさいな.

>|xu + yv|になるのは分かるんですけど、
><= √(x^2 + y^2)√(u^2 + v^2)

Schwartzの不等式を適用してるだけ.
A,B>=0のときは
A<BとA^2<=B^2は同値なんだから
そのままでしょう
#ちなみに,こういうのは「二乗をとる」とはいいません
#「二乗をとる」というと「二乗する」という逆の意味に解釈されえます.
#まあ、気持はわかる(指数を「除去」するという意味で「とる」といってるんだろうから)けど

>実数Reの部分だけを計算しているのか、意図が分かりません。
>
>それと、|Re(z w~)|は何故いきなりwが共役複素数になってるんですか?

意図も何も明らかで
どうにかして「xu+yv」をzとwから構築しようとしただけ.
z=x+iy, w=u+ivなんだから
xuを作るにはzwを計算することが自然にでてくる.
けどそれだと,iyiv=-yvがでてきてしまって符号が逆になるから
zw~という風に共役を使うとうまくいく.
そしてでてきたxu+yvはzw~の実部だから,Re(zw~)ってわけ.
これをきちんと整理して書けば
最初からいかにも見通してましたというように
Re(zw~)から天下り式に記述する.
数学の証明の常套手段です.
これからたくさんみるでしょう,この手の
「その最初の一歩どうやってみつけたんじゃ」という類の証明を.
どうやって見つけたかを考えるのも勉強です.
#ちなみに,xu+yvのように「掛け算」したものを「足す」というのは
#(a+b)(c+d)のような展開を巧妙に使うことで処理することが多い.これも常套手段.

自分で実際に手を動かして計算してないでしょう?
計算してたらすぐ意味はわかるはず.
計算してたら zz~=|z|^2と関係があるなんて思わないと思うなあ.

落ち着きなさいな.

>|xu + yv|になるのは分かるんですけど、
><= √(x^2 + y^2)√(u^2 + v^2)

Schwartzの不等式を適用してるだけ.
A,B>=0のときは
A<BとA^2<=B^2は同値なんだから
そのままでしょう
#ちなみに,こういうのは「二乗をとる」とはいいません
#「二乗をとる」というと「二乗する」という逆の意味に解釈されえます.
#まあ、気持はわかる(指数を「除去」するという意味で「とる」といってるんだろうから)けど

>実数Reの部分だけを計算しているのか、意図が分かりません。
>
>それと、|Re(z w~)|...続きを読む

Q|a(n+1)|≦r|an|⇒|an|≦r^(n-1)|a1|

|a(n+1)|≦r|an|⇒|an|≦r^(n-1)|a1|

これはどういう変形を行っているのでしょうか?
nで割っている?教えてください。

Aベストアンサー

任意の n ≧ 1 で |a(n+1)| ≦ r |an| ( r>0 )が成り立つと言っているわけですから、
n≧2で |a(n)| ≦ r |a(n-1)|
さらに、n>2 のとき |a(n-1)| ≦ r |a(n-2)| も成り立つのだから、
|a(n)| ≦ r |a(n-1)| ≦ r (r |a(n-2)|) = r^2 |a(n-2)|

これを次々と繰り返せば
|a(n)| ≦ r |a(n-1) ≦ r^2 |a(n-2)| ≦・・・ ≦ r^i |a(n-i)| ≦ r^(i+1) |a(n-i-1)| ≦ ・・・
≦ r^(n-2) |a(2)| ≦ r^(n-1) |a(1)|

∴ n≧2 において、|a(n)| ≦ r^(n-1) |a(1)|

Q不等式 |a-b|<(1/2)|b| ならば |a|>(1/2)|b| (a,b:複素数) の証明

解析の本で
ある複素数列がある複素数に収束するとき
その逆数の数列が収束値の逆数に収束する証明で使われています。
なんか自明のように使われていました。

虫のいいお願いですが、
複素平面を利用した幾何的な証明と
代数的な(式による)証明と
いただけるとうれしいです。

Aベストアンサー

幾何的証明は図を描けば明らかなので、代数的証明を。


|a-b|≧|b|-|a|が成立すれば、
|a|≧|b|-|a-b|>|b|-(1/2)|b|=(1/2)|b|
となるので、|a-b|≧|b|-|a|を証明することにします。


a=a1+ia2、b=b1+ib2、とおくと、
(|a-b|)^2-(|b|-|a|)^2
=(a1-b1)^2+(a2-b2)^2-(a1^2+a2^2+b1^2+b2^2-2|a||b|)
=2(|a||b|-a1b1-a2b2)

ここで、
(|a||b|)^2-(a1b1+a2b2)^2
=(a1^2+a2^2)(b1^2+b2^2)-(a1^2*b1^2+a2^2*b2^2+2a1a2b1b2)
=a1^2*b2^2+a2^2*b1^2-2a1a2b1b2
=(a1b2-a2b1)^2≧0
なので、
(|a-b|)^2-(|b|-|a|)^2≧0

∴|a-b|≧|b|-|a|



なお、|a||b|-(a1b1+a2b2)≧0 は、
内積 a・b=a1b1+a2a2=|a||b|cosθ≦|a||b|
からでも証明可能です。

幾何的証明は図を描けば明らかなので、代数的証明を。


|a-b|≧|b|-|a|が成立すれば、
|a|≧|b|-|a-b|>|b|-(1/2)|b|=(1/2)|b|
となるので、|a-b|≧|b|-|a|を証明することにします。


a=a1+ia2、b=b1+ib2、とおくと、
(|a-b|)^2-(|b|-|a|)^2
=(a1-b1)^2+(a2-b2)^2-(a1^2+a2^2+b1^2+b2^2-2|a||b|)
=2(|a||b|-a1b1-a2b2)

ここで、
(|a||b|)^2-(a1b1+a2b2)^2
=(a1^2+a2^2)(b1^2+b2^2)-(a1^2*b1^2+a2^2*b2^2+2a1a2b1b2)
=a1^2*b2^2+a2^2*b1^2-2a1a2b1b2
=(a1b2-a2b1)^2≧0
なので、
(|a-b|)^2-(|b|-...続きを読む

Q異なる4点A(α)、B(β)、C(γ)、D(δ)で、|α|=|β|=|γ|=|δ|、α+β+γ+δ=

異なる4点A(α)、B(β)、C(γ)、D(δ)で、|α|=|β|=|γ|=|δ|、α+β+γ+δ=0のとき、A、B、C、Dを頂点とする四角形が長方形になることの証明を、どなたかお願いします。

Aベストアンサー

(1) 2次元ユークリッド平面上のベクトルの話だという限定を付けないと、長方形にはならない。(3次元なら、たとえば原点に重心がある正四面体の頂点がα,β,γ,δでも条件を満たすでしょ。)
(2) |α|=0の場合は例外だし、α,β,γ,δのうちに同じものが含まれる場合も例外。
ということに注意した上で
(3) |α|=|β|=|γ|=|δ|=1の場合に証明すれば、他の場合は自明なので、=1の場合だけ考える。
(4) x = (α+β) とすると、αとxがなす角θはxとβがなす角と同じ。
(5) (γ+δ) = -xでなくちゃならない。で、γとxがなす角ξはxとδがなす角と同じ。
あとはθ=ξを示せばよかろ。


人気Q&Aランキング

おすすめ情報