この初期値問題の解き方を教えてください。

yy''=(y')^2 , y(0)=y'(0)=1

A 回答 (3件)

与式を


y''/y'=y'/yと
変形してみてはいかがでしょうか。こう変形すると

∫[f'(x)/f(x)]dx=ln(f(x))+C
を使うことができます。
この先は自力でチャレンジしてみてください。
    • good
    • 0

∫(y"/y')dy=∫(y'/y)dy


log|y'|=log|y|+C
log|y'/y|=C
y'/y=e^C
y'/y=C
y'=Cy
dy/dx=Cy
dy/y=Cdx
log|y|=Cx+D
y=e^(Cx+D)
y=De^Cx

y(0)=1よりD=1
y'(0)=1よりC=1

よってy=e^x

こんな感じだったかな。途中プラスマイナスの符号がなかったり、C,Dの使い方がいい加減ですが、だいたいの雰囲気で。
    • good
    • 0

UMADAさんに習って、ヒントだけです。


この2階微分方程式はxを含んでいませんので、
y’=p
とおくと、
yとpの1階微分方程式になります。
yp'=p
以上です。
    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aと関連する良く見られている質問

Qx1=(1,1,1),x2=(1,1,-1),x3=(1,-1,-1)をC^3の基底,{y1,y2,y3}がその双対基底でx=(0,1,0)の時,y1(x),y

[問] ベクトルx1=(1,1,1),x2=(1,1,-1),x3=(1,-1,-1)をC^3の基底とする。
{y1,y2,y3}がその双対基底でx=(0,1,0)の時、
y1(x),y2(x),y3(x)を求めよ。

という問題の解き方をお教え下さい。

双対基底とは
{f;fはF線形空間VからFへの線形写像}
という集合(これをV*と置く)において、
V(dimV=nとする)の一組基底を{v1,v2,…,vn}とすると
fi(vj)=δij(:クロネッカーのデルタ)で定めるV*の部分集合
{f1,f2,…,fn}はV*の基底となる。これを{v1,v2,…,vn}の双対基底と呼ぶ。

まず、
C^3の次元は6(C^3の基底は(1,0,0),(0,1,0),(0,0,1),(i,0,0),(0,i,0),(0,0,i))
だと思うので上記のx1,x2,x3は基底として不足してると思うのです(もう3ベクトル必要?)。

うーん、どのようにしたらいいのでしょうか?

Aベストアンサー

>C^3の次元は6(

これが間違え.
「x1=(1,1,1),x2=(1,1,-1),x3=(1,-1,-1)をC^3の基底」
といってるんだから,係数体はRではなく,C.

あとは定義にしたがって,
dualな基底を書き下せばいいだけ.
y1(x1)=1,y1(x2)=y1(x3)=0であって
v=ax1+bx2+cx2と表わせるわけだし,
v=(v1,v2,v3)とすれば,a,b,cはv1,v2,v3で表現できる
#単なる基底変換の問題.

Qx+y+z=0,2x^2+2y^2-z^2=0のとき,x=yであることを証明せよ。

クリックありがとうございます(∩´∀`)∩

 ★x+y+z=0,2x^2+2y^2-z^2=0のとき,x=yであることを証明せよ。

この問題について説明をお願いします。

Aベストアンサー

おおざっぱな説明になりますが、左の式を
z=-x-y
として、それを右の式のzに代入します。
それを展開してまとめると
x^2-2xy+y^2=0
という式になります。
あとはこれを因数分解すれば
(x-y)^2=0
となるので、x=yという答えがでます。
与えられた条件がほかになければこれでいいはずです。

Qx>0,y>0,z>0 で、x^2+y^2+z^2=a^2のとき、

x>0,y>0,z>0 で、x^2+y^2+z^2=a^2のとき、
xy+yz+zxの最大値を求めよ。

コーシーシュワルツの不等式を使うとでるとおもうが、
別解での解答はどうなるのか。よろしくお願いします。

Aベストアンサー

どういう風にシュワルツを使うのか。。。。。w
そんな仰々しいものを持ち出さなくても、教科書に載ってる不等式(絶対不等式)で用が足りる。



x、y、zは実数から、x^2+y^2+z^2≧xy+yz+zx で終わり。
等号は、x>0,y>0,z>0から、x=y=z=a/√3の時。

Q曲面z=f(x,y)=x^2+y^3上の(x,y)=(1,-1)に対応

曲面z=f(x,y)=x^2+y^3上の(x,y)=(1,-1)に対応する点における接平面の式として正しいものを、次の[1]~[4]の中から一つ選べ。
[1]z = 2x - 3y + 1
[2]z = 2x + 3y + 3
[3]z = 2x + 3y + 1
[4]z = 2x + 3y

…という問題だとしたら、答えはなんでしょうか?(実は問題に少し意図的な仕掛けがしてあります)

自分で途中までやってみますと
f(1,-1)
= 1^2 +(-1)^3
= 1 - 1
= 0

f_x = 2x
f_y = 3y

f_x(1,-1) = 2
f_y(1,-1) = -3

ここまでは合っていますよね?
接平面の方程式は
z = f_x(x_0,y_0)(x-x_0) + f_y(x_0,y_0)(y-y_0) + f(x_0,y_0)
ですよね?
では、お願いします。

Aベストアンサー

>ここまでは合っていますよね?
間違っています。

誤:f_y=3y
正:f_y=3y^2

誤:f_y(1,-1) = -3
正:f_y(1,-1) = 3

>接平面の方程式は
>z = f_x(x_0,y_0)(x-x_0) + f_y(x_0,y_0)(y-y_0) + f(x_0,y_0)
>ですよね?
この公式は合っています。

正しい答えは
>[3]z = 2x + 3y + 1
です。

Q線形です (1)を x+3y-2z=0 x-2y+4z=0 x^2+y^2+z^2=1をもちいて 答

線形です
(1)を
x+3y-2z=0
x-2y+4z=0
x^2+y^2+z^2=1をもちいて
答えが+-の答えになりました
(2)では外せきが8,-6,-5となり
おおきさの5ルート5で割ると
+-の答えにはなりませんでした
どちらが正しいのでしょうか?

Aベストアンサー

外積からでてきた単位べクトルは、外積の定義から、ベクトルa、bに垂直ですよね。
だからそれと正反対のベクトルも、ベクトルa、bに垂直な単位ベクトルだから、これも答えに入れれば
よいのです。つまり外積から出した単位ベクトルの各成分に(-1)をかけた成分のベクトルも答えに
なります。そしてこうして出した2つのベクトルは、先に内積で出した2つのベクトルと一致します。


人気Q&Aランキング

おすすめ情報