Diracのδ関数について教えてください。公式(定義)のひとつに

2πδ(x)=Σexp(inx) , (n= -∞,・・・, -2, -1, 0, 1, 2, ・・・, ∞)

がありますが、右辺の n についての和を、整数のかわりに半奇数(n= -∞,・・・, -3/2, -1/2, 1/2, 3/2, ・・・, ∞)と変えた場合、この級数はδ関数と何らかの関係がつけられるものでしょうか?

このQ&Aに関連する最新のQ&A

A 回答 (2件)

超関数はフーリエ変換やフーリエ級数を使って扱うのがしばしば便利で、ご質問もその範疇のものです。


2πδ(x)=Σexp(inx) , (n= -∞,・・・, -2, -1, 0, 1, 2, ・・・, ∞)
これは周期2πを持つ周期的δ関数のフーリエ級数展開を表しています。つまりδ(x)は|x|=0,2π, 4π, .... 以外では0になっていて、
∀x (δ(x) = δ(x+2π))
という性質を満たします。

右辺の n についての和を、整数のかわりに半奇数(n= -∞,・・・, -3/2, -1/2, 1/2, 3/2, ・・・, ∞)と変えた場合をD(x)とすると、
D(x) = Σexp(i(n+1/2)x) , (n= -∞,・・・, -2, -1, 0, 1, 2, ・・・, ∞)
=exp(ix/2)Σexp(inx)
=2π exp(ix/2)δ(x)
です。ゆえにD(x)は
|x|=0,2π, 4π, .... 以外では0になっています。また
D(x+2π) = 2π exp(i(x+2π)/2)δ(x+2π)
= 2π exp(ix/2)δ(x+2π)exp(iπ)
= 2π exp(ix/2)δ(x)exp(iπ)
= -2π exp(ix/2)δ(x)
= -D(x)
だから
∀x (D(x) = -D(x+2π))
です。そして、
D(0) = δ(0)
ですから
D(x)は周期4πを持ち、|x|=0, 4π, 8π,... ではδ(x)と同じで、|x|=2π, 6π, ... では-δ(x)と同じである、そういう関数になります。

ちなみに、周期的でないδ関数はフーリエ変換
2πδ(x) = ∫exp(itx) dt (積分は-∞~∞)
で表されます。
    • good
    • 0
この回答へのお礼

stomachmanさん、こんにちは。とてもわかりやすい説明ありがとうございます。
nを1/2ずらしてδ(x)に関係付けたわけですが、もとの場合とnの取る値の範囲がずれた影響はないのでしょうか?(といっても、-∞+1/2~∞+1/2 をどう考えればいいかよくわかりませんが・・・)

お礼日時:2001/11/07 01:57

stomachman さんの完璧解答があるので,蛇足の補足ですが...



> nを1/2ずらしてδ(x)に関係付けたわけですが、
> もとの場合とnの取る値の範囲がずれた影響はないのでしょうか?
>(といっても、-∞ +1/2~∞+1/2 をどう考えればいいかよくわかりませんが・・・)

単純に考えるなら,すべての n について和を取っているのですから,
すらしても影響はありません.
ただし,もう少し慎重に考えると,無限和に注意しないといけません.
n をずらすのは和の順序を変更するのと同じことで,
無限和で項の順序を変更するには注意が必要です.

δ関数は普通の関数ではなく,stomachman さんが書かれていますように超関数ですが,
とりあえずは積分核+極限操作と考えて置けばよいでしょう.
こういう立場なら,
exp の中味に -ε|n| という強い収束因子(ε>0)を加えておいて和を収束させ,
「おとなしい」関数との積を作って積分してからε→0 とすれば大丈夫です.
そもそも,もとの Σexp(inx)が通常の意味では収束しませんよね.

なお,今の周期的δ関数は基本周期が -π<x<π ですが,
周期関数でなくて定義域を -π<x<π に限定してしまっている
(しばしば暗黙の内に)場合もありますので,ご注意下さい.
具体的問題に関してδ関数が出てくる場合にどちらになっているかは
その問題の設定によります.
    • good
    • 0
この回答へのお礼

siegmundさん、こんにちは。蛇足どころか丁寧な補足をありがとうございます。
ご指摘のように、δ関数の実用としては Σexp(-ε|n| +inx) としておけばOKですね。
細かな点の注意もしていただき恐縮です。

お礼日時:2001/11/08 20:32

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

QR^n∋A_1,A_2,…はΣ[k=1..∞]λ^*(A_k)<∞を満たす.∩[n=1..∞]∪[k=n..∞]A_kはLebesgue外測度0?

よろしくお願い致します。

A_1,A_2,…をΣ[k=1..∞]λ^*(A_k)<∞を満たすR^nの部分集合とせよ。
(ア) ∩[n=1..∞]∪[k=n..∞]A_kがLebesgue外測度0を持つ事を示せ。
(イ) これはLebesgue測度0を持つか? 持つなら理由を述べよ。

という問題です。

(ア)について
Lebesgue外測度の定義からλ^*(A_k)=inf{Σ[i=1..∞]|I_i|;A_k⊂∪[i=1..∞]I_i}…(1)
(但しI_iはn次元区間塊[a_1,b_1]×[a_2,b_2]×…×[a_n,b_n])と書け,
題意よりΣ[k=1..∞]λ^*(A_k)<∞なのでλ^*(A_k)<∞と分かる。
それでλ^*(∩[n=1..∞]∪[k=n..∞]A_k)=inf{Σ[i=1..∞]|I_i|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i}
から先に進めません。
λ^*(∩[n=1..∞]∪[k=n..∞]A_k)=Σ[n=1..∞]λ(∪[k=n..∞]A_k)なんて変形もできませんよね。
どのすれば=0にたどり着けますでしょうか?

(イ)について
答えは多分Yesだと思います。
Lebesgue可測集合はL:={E∈R^n;E⊂Uでinf{λ^*(U\E);Uは開集合}=0}の元の事ですよね。
なのでLebesgue測度は制限写像λ^*|L:=μと書けますよね。
それで∩[n=1..∞]∪[k=n..∞]A_k∈Lを示せば(ア)からLebesgue測度0が言えると思います。
今,(ア)より
inf{Σ[i=1..∞]|I_i|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i}=0
と分かったので
0=inf{Σ[i=1..∞]|I_i|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i}
=inf{Σ[i=1..∞]|I_i\Bd(I_i)∪Bd(I_i)|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i\Bd(I_i)∪Bd(I_i)}
(但しBd(I_i)は境界点)
=inf{Σ[i=1..∞]|I_i\Bd(I_i)|+|Bd(I_i)|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i\Bd(I_i)∪Bd(I_i)}
(∵||の定義)
からinf{Σ[i=1..∞]|I_i\Bd(I_i)|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i\Bd(I_i)}
となればI_i\Bd(I_i)は開集合になので
inf{Σ[i=1..∞]|I_i\Bd(I_i)|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i\Bd(I_i)}=0が言え,
∩[n=1..∞]∪[k=n..∞]A_k∈Lも言え,
μ(∩[n=1..∞]∪[k=n..∞]A_k)=λ^*(∩[n=1..∞]∪[k=n..∞]A_k)=0(∵(ア))
となりおしまいなのですが

inf{Σ[i=1..∞]|I_i\Bd(I_i)|+|Bd(I_i)|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i\Bd(I_i)∪Bd(I_i)}
から
inf{Σ[i=1..∞]|I_i\Bd(I_i)|;∩[n=1..∞]∪[k=n..∞]A_k⊂∪[i=1..∞]I_i\Bd(I_i)}
となる事がどうしても言えません。どうすれば言えますでしょうか?

よろしくお願い致します。

A_1,A_2,…をΣ[k=1..∞]λ^*(A_k)<∞を満たすR^nの部分集合とせよ。
(ア) ∩[n=1..∞]∪[k=n..∞]A_kがLebesgue外測度0を持つ事を示せ。
(イ) これはLebesgue測度0を持つか? 持つなら理由を述べよ。

という問題です。

(ア)について
Lebesgue外測度の定義からλ^*(A_k)=inf{Σ[i=1..∞]|I_i|;A_k⊂∪[i=1..∞]I_i}…(1)
(但しI_iはn次元区間塊[a_1,b_1]×[a_2,b_2]×…×[a_n,b_n])と書け,
題意よりΣ[k=1..∞]λ^*(A_k)<∞なのでλ^*(A_k)<∞と分かる。
それでλ^*(∩[n=1..∞]∪[k=n..∞]A_k)=inf{Σ[i=...続きを読む

Aベストアンサー

数列の部分和の定義と∩∪の定義からすぐだと思いますよ。
面倒なので外測度を単にλで表します。
仮定はΣλ(A_k)<∞です。これは級数の収束の定義から部分和
S_N=Σ[k=1,..,N] λ(A_k)
がコーシー列、よって
任意のε>0に対してNが存在し、n≧Nならば
Σ[k=n,...,∞] λ(A_k)<ε
ということを言っているわけです。
問題は、∩[n=1,..,∞]∪[k=n,..∞] A_kの外測度を求めることですが上の事実を利用できることが分かると思います。上で示したNをとってきます。このとき
λ(∩[n=1,..,∞]∪[k=n,..∞] A_k)≦Σ[k=N,..,∞] λ(A_k)<ε
となるのはほとんど明らかですね。任意のεに対してもっと大きい番号N'をとっても問題の集合はN'から先の和集合に含まれるわけですからこれは結局λ(∩[n=1,..,∞]∪[k=n,..∞] A_k)=0でなければならないことを示しています。

Q(再投稿)R^n∋A_1,A_2,…はΣ[k=1..∞]λ^*(A_k)<∞を満たす.∩[n=1..∞]∪[k=n..∞]A_kはLebesgue外測度0?

すいません。
http://okwave.jp/qa4327195.html
について再投稿です。


A:=∩[n=1..∞]∪[k=n..∞]A_kと置いて
今,AがLegesgue可測集合である事を示したい訳ですよね。
Lebesgue可測集合とはλをLebesgue外測度とする時,
{E;Eはn次元区間塊,E⊂∀S⊂R^n,λ(S)≧λ(S∩E)+λ(S∩E^c)}の元の事ですよね。
そこで疑問なのですがλはn次元区間塊全体に対して定義された写像ですよね。なのでλ(S∩E)とλ(S∩E^c)はそれぞれλ(E)+λ(E^c)で(∵E⊂∀S⊂R^n),一応は定義されているのですがλ(S)はSの採りようによってはλ(S)自体が定義されないという状況に陥ってしまいます(∵必ずしもSはn次元区間塊とは限らない)。
するとλ(S)≧λ(S∩E)+λ(S∩E^c)という不等式は意味を成さなくなります。
従って,AがLebesgue可測集合である事が示せなくなってしまいます。
Lebesgue可測集合の定義を勘違いしてますでしょうか?

すいません。
http://okwave.jp/qa4327195.html
について再投稿です。


A:=∩[n=1..∞]∪[k=n..∞]A_kと置いて
今,AがLegesgue可測集合である事を示したい訳ですよね。
Lebesgue可測集合とはλをLebesgue外測度とする時,
{E;Eはn次元区間塊,E⊂∀S⊂R^n,λ(S)≧λ(S∩E)+λ(S∩E^c)}の元の事ですよね。
そこで疑問なのですがλはn次元区間塊全体に対して定義された写像ですよね。なのでλ(S∩E)とλ(S∩E^c)はそれぞれλ(E)+λ(E^c)で(∵E⊂∀S⊂R^n),一応は定義されているのですがλ(S)はSの採りようによってはλ(S)自体が定義され...続きを読む

Aベストアンサー

とりあえず教科書を読む.
定義が分かってなければ何もできない.

>Lebesgue可測集合とはλをLebesgue外測度とする時,
>{E;Eはn次元区間塊,E⊂∀S⊂R^n,λ(S)≧λ(S∩E)+λ(S∩E^c)}の元の事ですよね。

こんなこと本当に書いてある?なんか読み落としているとか
説明の途中の何かだとか,勝手に創作してるとか?

>Lebesgue可測集合の定義を勘違いしてますでしょうか?
してる.
だって,それだったら「円」ですらルベーク可測じゃなくなる.

Q何故lim[n→∞](a_n-1)/(a_n+1)=0⇒lim[n→∞]a_n=1?

識者の皆様おはようございます。

lim[n→∞](a_n-1)/(a_n+1)=0⇒lim[n→∞]a_n=1
を示すのに困っています。
定義に従って書くと仮定は
0<∀ε'∈R,∃m'∈N;m'<k⇒|(a_k-1)/(a_k+1)-0|<ε'…(*)
となり、
これから
0<∀ε∈R,∃m∈N;m<k⇒|a_k-1|<ε…(**)
を導かねばならないのですがなかなか(*)から(**)を導けません。
どのようにして導けますでしょうか?

Aベストアンサー

対偶を使えばいいでしょ。つまり(**)の否定から(*)の否定を導けば良い。

 (**)を略記なしに書くと、
∀ε((ε∈R∧0<ε)⇒∃m(m∈N∧∀k((k∈N∧m<k)⇒|a_k-1|<ε)))
であり、その否定は
∃ε((ε∈R∧0<ε)∧∀m(m∈N⇒∃k((k∈N∧m<k)∧((a_k-1)≧ε∨-(a_k-1)≧ε)))
です。質問者さん流に書けば
0<∃ε∈R,∀m∈N, m<∃k∈N;((a_k-1)≧ε∨-(a_k-1)≧ε)…~(**)
とでもなりますか。すると(*)の否定は
0<∃ε'∈R,∀m∈N, m<∃k∈N;((a_k-1)/(a_k+1)≧ε'∨-(a_k-1)/(a_k+1)≧ε')…~(*)
となりましょう。

 で、~(**)⇒~(*)を証明すりゃ良い。まず~(**)だとすると、ε, m, kを固定したとき、
[1] (a_k-1)≧εの場合、(ANo.1の計算を利用すると)
(a_k-1)/(a_k+1) = 1-2/(a_k +1)≧1-2/(2+ε)>0
[2] -(a_k-1)≧εの場合も同様に、
-(a_k-1)/(a_k+1) = -(1-2/(a_k +1))≧2/(2-ε)-1>0
です。
 さてここで、
0<ε'∧((a_k-1)/(a_k+1)≧ε'∨-(a_k-1)/(a_k+1)≧ε')
が成り立つようなε'(ただしε'は、m, kに依らずεだけで決まる)の具体例をひとつ構成すれば良いわけです。

対偶を使えばいいでしょ。つまり(**)の否定から(*)の否定を導けば良い。

 (**)を略記なしに書くと、
∀ε((ε∈R∧0<ε)⇒∃m(m∈N∧∀k((k∈N∧m<k)⇒|a_k-1|<ε)))
であり、その否定は
∃ε((ε∈R∧0<ε)∧∀m(m∈N⇒∃k((k∈N∧m<k)∧((a_k-1)≧ε∨-(a_k-1)≧ε)))
です。質問者さん流に書けば
0<∃ε∈R,∀m∈N, m<∃k∈N;((a_k-1)≧ε∨-(a_k-1)≧ε)…~(**)
とでもなりますか。すると(*)の否定は
0<∃ε'∈R,∀m∈N, m<∃k∈N;((a_k-1)/(a_k+1)≧ε'∨-(a_k-1)/(a_k+1)≧ε')…~(*)
となりましょう。

 で、~(**)⇒~(*)を証明すりゃ良い。まず~(**)...続きを読む

Q極限値lim[n→∞](3^n/(2^n+n^2))とlim[n→∞](2^n+3^n)^(1/n)の求め方は?

(1)lim[n→∞](3^n/(2^n+n^2))
(2)lim[n→∞](2^n+3^n)^(1/n)

の極限値がわかりません。
(1)は3^nで分母・分子を割って
lim[n→∞](3^n/(2^n+n^2))
=
lim[n→∞][1/{(2/3)^n+n^2/3^n}]
までいけたのですがn^2/3^nが収束するのか発散するのか分かりません。
どうなるのでしょうか?

あと、(2)は対数を取って
lim[n→∞]log(2^n+3^n)^(1/n)
=
lim[n→∞](1/n)log(2^n+3^n)
までいけたのですがここから先へ進めません。

Aベストアンサー

YYoshikawaさん、こんにちは。

[(1)について]

> n^2/3^nが収束するのか発散するのか分かりません。

まず感覚として、ANo.1さんも書かれているように、n=100で考えてみると、
 n^2/3^n = 10000/3^100
ですが、3^2=9 が大体10ですから、3^100 は、10^50 ぐらいなわけで、0が50個ぐらいつきますから、10000などよりは、はるかに大きくなります。つまり n^2/3^n → 0 が予想できます。

数式では次のように証明できます。

まず、n^2/3^n はnが大きいとき単調減少です。
実際、a(n)=n^2/3^n とおき、

 a(n+1)/a(n) = [(n+1)^2/3^(n+1)]/[n^2/3^n]

と比をとってみると、

 a(n+1)/a(n) = [1+(1/n)]^2/3 = [1 + 2/n + 1/n^2]/3 … (3)

ですが、nが大きいときには、2/n < 1, 1/n^2 < 1 なので、(3)は、

 a(n+1)/a(n) < 1

となり、単調に減少することがわかります。
まずこの時点で発散はしないことがわかります。
また、a(n) > 0 なので、lim_{n→∞} a(n) ≧ 0 となります。

もし、a(n) の収束値bが、正の有限値なら、n→∞で、
 a(2n)/a(n) → b/b = 1
になるはずですが、
 a(2n)/a(n) = [(2n)^2/3^{2n}]/[n^2/3^n] = 4/3^n → 0
になるので、収束値bは正の有限値にはなりません。

従って、
 lim_{n→∞} a(n) = 0 … (4)
が得られます。

[(4)の別証]
(3)式 a(n+1)/a(n) = [1+(1/n)]^2/3 = [1 + 2/n + 1/n^2]/3 より、
n>10で、
 a(n+1)/a(n) < [1 + 2/10 + 1/100]/3 < 2/3
故に、n→∞ のとき、
 0 < a(n) = [a(n)/a(n-1)]・[a(n-1)/a(n-2)] ・…・ [a(12)/a(11)]・a(11)
      < (2/3)^{n-11}× a(11) = (2/3)^n × (3/2)^{11}a(11) → 0
故に
 lim_{n→∞} a(n) = 0
が得られる。
(別証終わり)


[(2)について]

まず感覚的なことを説明しますと、nが大きいとき、2^nは3^nに比べてはるかに小さくなるので、基本的に、lim[n→∞](2^n+3^n)^(1/n)の、2^n+3^nの部分は3^nに近づくことがわかり、問題の式は(3^n)^{1/n}=3 になることが予想されます。

これを式で言うには、対数をとるより、

 lim_{n→∞} [3^n×{1+(2/3)^n}]^{1/n}
 = lim_{n→∞} 3×[1+(2/3)^n]^{1/n} … (5)

と変形するのが良いでしょう。(2/3)^n → 0 なので、
 [1+(2/3)^n]^{1/n} → 1 … (6)
なので、
 (5) = 3
になります。


なお、(6)が明らかと思われない場合は、
 1 = 1^{1/n} < [1+(2/3)^n]^{1/n} < 1+(2/3)^n → 1
(∵ a > 1 に対して、a^{1/n} = (a^{1/n})^n = a )
より、[1+(2/3)^n]^{1/n} → 1
と証明します。

YYoshikawaさん、こんにちは。

[(1)について]

> n^2/3^nが収束するのか発散するのか分かりません。

まず感覚として、ANo.1さんも書かれているように、n=100で考えてみると、
 n^2/3^n = 10000/3^100
ですが、3^2=9 が大体10ですから、3^100 は、10^50 ぐらいなわけで、0が50個ぐらいつきますから、10000などよりは、はるかに大きくなります。つまり n^2/3^n → 0 が予想できます。

数式では次のように証明できます。

まず、n^2/3^n はnが大きいとき単調減少です。
実際、a(n)=n^2/3^n とおき、...続きを読む


人気Q&Aランキング

おすすめ情報