加速度,速度,変位の関係を微分積分を使ってやさしく詳しく教えてください。

A 回答 (3件)

速度は加速度を時間で積分したものです。



例えば初速度 0m/sec、加速度 2m/sec/sec で 8秒間加速すると
次のような積分になります。
(テキストでどう書けば良いのか分かりませんでした。(^^;))

加速度    a(t) = 2
速度      v(t) = 積分[ a(t)dt ]
           = 2t + V0 ( V0は初速度)
8秒後の速度 v(8) = 2 * 8 = 16 (初速度をゼロとした)

(* は掛け算のつもりです。)
というわけで、8秒後の速度は 16m/sec となります。

距離は速度を時間で積分したものになります。
同じように初速度 0m/sec、加速度 2m/sec/sec で 8秒間加速すると

速度      v(t) = 2t (初速度はゼロとする)
位置      x(t) = 積分[ v(t)dt ]
           = t*t + X0 ( X0はスタート位置)
8秒後の位置 x(8) = 8 * 8 = 64 (スタート位置をゼロとした)

つまり 64m進んだということになります。

この程度で良いのでしょうか?
もっとやさしく?
それとももっと詳しく?


Jizou
    • good
    • 2

まず変位をxとしたとします。

x軸上のどこにあるか、ということですね。変位xは時間tの関数になっています。x=f(t)という形です。ある時間tのとき、どこにいるかが決まります。
速度は(距離)÷(時間)の式で分かるとおり、一定時間ごとにどれくらい距離が変化するか、ということです。この「一定時間」を限りなく0に近づける…、これこそは微分ですね。ということで、速度は変位を時間で微分したものということになります。v=dx/dtと表せます。
同様に加速度とは、速度がどれくらい変化するか、ということですから速度を時間で微分することで求められます。α=dv/dt=d^2x/dt^2と表せます。

これが分かれば、逆の積分の方もなんとなくわかると思います。

回答になってないかもしれませんが、ちょっと気がついたことだけ書かせてもらいました。

では。
    • good
    • 0

加速度a、速度v、変位x、時間をtとして、


v=dx/dt,a=dv/dtです。
例えばt時間後の変位Xが
X=t^2
だったとするとt時間後の速度vは
v=2t
ですし、加速度aは
a=2
となって加速度はいつも一定です。
    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q物理の速度、加速度計算

物理 速度と加速度の計算について
画像の値を使い、速度と加速度を求めたいです。速度vの一つ目のマス(青丸のところ)を求めるとすると
(0.7-0)/0.1×100でいいのでしょうか。。赤丸のところの 加速度は(800-700)/0.1でいいのですか?
自信がなくて質問しました。

Aベストアンサー

 No.2です。No.3さんの回答を見て、ピンと来ました。

 「距離 [m^(-2)]」は、おそらく「距離 10^(-2) [m]」(=cm)と書きたかったのではないでしょうか。

 この「実験結果記入シート」を作った先生は、ちょっと残念ですね。

Q微小変化のdやδ,微分のd,積分のd,ベクトル解析や微分幾何学の微分形式

これらは、定義は夫々バラバラだと思いますが、共通的な概念があると思います.より統一的な視点ではどのように解釈したらよいでしょうか?特に超準解析の無限小から始まって統一的に理解できるでしょうか?

Aベストアンサー

「超準解析」は遠い昔に読んだ記憶があり、細かいことは忘れてしまいましたが、一言、考えを述べさせて頂きます。
超準解析は、基礎論の立場から、超べき(超積)によって超準モデルをつくり、さらにそれを、広大化させて理論を展開し、位相、その他の解析的概念を構成する方法をとっています。
したがって、当然、微小量に関わることは統一的に理解できるものと予想できますが、微分幾何学の接ベクトル場や微分形式など、あらゆる場面を超準解析で理解しようとするのは、多少無理な部分がでてくるかもしれません。
よく言われるように、一つの公理系では到達できない命題があるからです。

あまり、自信のないことを書いてしまいましたが、こんなことで、よろしいでしょうか。

Q衝撃加速度の計算方法について、物理・工学的な見地から御教示いただきたく御願いします

回答は計算方法等を明示のうえ、誤りを具体的に御指摘願います。
特に係数等の適否について御教示いただければと思います。
下記の計算式では、追突車両が300トン以上になっても、衝撃加速度は2.09G以上にはならないため、時速8km/hの追突では追突車両の重量によらず、衝撃加速度は約2Gとなり、不自然に思います。係数を固定にすることに原因があるのでしょうか。
私としては、追突車両が乗用車と大型車では、反発係数や衝突時間の係数を変えなければならないと思いますが、どこに誤りがあるのでしょうか。
計算式(被追突車両の運転席の乗員者が追突車両から受ける衝撃加速度)
a2 ={(1+e)*V10}/{t*(1+W2/W1)*3.6}=9.6/0.51=18.8m/s2= 1.92G
a2=被追突車の受ける衝撃加速度
V10=追突車の衝突速度 = 8km/h
W1=追突車両総重量 = 12,000kgf
W2=被追突車両総重量 = 1,040kgf
e=反発係数=0.20
G=重力加速度=9.8m/s2
t=衝突時間= 0.13
3.6=速度km/hをm/sに変換する係数

回答は計算方法等を明示のうえ、誤りを具体的に御指摘願います。
特に係数等の適否について御教示いただければと思います。
下記の計算式では、追突車両が300トン以上になっても、衝撃加速度は2.09G以上にはならないため、時速8km/hの追突では追突車両の重量によらず、衝撃加速度は約2Gとなり、不自然に思います。係数を固定にすることに原因があるのでしょうか。
私としては、追突車両が乗用車と大型車では、反発係数や衝突時間の係数を変えなければならないと思いますが、どこに誤りがあるのでしょう...続きを読む

Aベストアンサー

被追突車両は、追突前は静止していると考えます。

 そうであれば、まずの基本は、追突後の速度を V12, V22 として
(1)運動量保存
   W1 * V10 + W2 * 0 = W1 * V12 + W2 * V22    (A)
(2)相対速度の比=反発係数
   V12 - V22 = -0.20 * (V10 - 0)           (B)
から、V12, V22 を求めることです。

 ちなみに蛇足ですが、W1, W2 の単位は「kg」であって「kgf」ではありません。「kgf」は「質量」ではなく「力」の単位です。(1 kgf = 9.8 N)

 重力加速度G=9.8m/s^2を使うなら、速度の単位は m/s に統一します。つまり
 V10 = 8 km/h ≒ 2.22 m/s

これより
  12000*V10 = 26640 = 12000*V12 + 1040*V22  
  V12 - V22 = -0.20 * 2.22 = -0.444
よって
  V12 ≒ 2.01 (m/s)
  V22 ≒ 2.45 (m/s)

 つまり、被追突車両は、追突によって
  静止状態 → 2.45 (m/s)
に加速されたことになります。この「衝突時間」が「 0.13 s 」であれば、平均の加速度は
  2.45 (m/s) / 0.13 (s) ≒ 18.8 (m/s^2)
です。

 ということで、質問者さんの計算結果に間違いはないと思います。


 以上の計算を、追突車両の質量 W1 を「300 ton = 3.0 × 10^5 kg」に変更すれば、運動量保存の式(A)は
  3.0 × 10^5 * V10 = 6.66 × 10^5 (kg・m) = 3.0 × 10^5 * V12 + 1040*V22
となりますから、相対速度の式
  V12 - V22 = -0.20 * 2.22 = -0.444
との連立式を解いて
  V12 ≒ 2.21 (m/s)
  V22 ≒ 2.65 (m/s)
ということです。「衝突時間」が「 0.13 s 」であれば、平均の加速度は
  2.65 (m/s) / 0.13 (s) ≒ 20.4 (m/s^2) ≒ 2.08G
です。
  
 これまた、質問者さんの計算結果に間違いはないと思います。

 それは、計算間違いではなく、「反発係数 0.20 」とする限りは、(B)式から分かるとおり、V22(被追突車両の速度)が 1.20*V10 = 2.66 (m/s) を上回ることはないからです。(V12 = V10 のときに V22 が最大になる。V12 > V10 となることはあり得ない)

 もし仮に、「反発係数 1.0 」(完全弾性衝突)としても、V22(被追突車両の速度)の最大値は 2 * V10 です。
 座標軸を変えて、衝突車両側に座標の原点をとり、被追突車両が動いて衝突したことを考えると、最大でも「逆向きの同じ大きさの速さで跳ね返る」ということですから。(地面に対する完全弾性のボールを考えれば分かる通り、ボールが衝突前の速さ以上の速さで跳ね返ることはない)

 これに対して、追突車両の速度が大きくなり、かつ「衝突時間」が短くなれば、衝撃は大きくなるでしょう。

被追突車両は、追突前は静止していると考えます。

 そうであれば、まずの基本は、追突後の速度を V12, V22 として
(1)運動量保存
   W1 * V10 + W2 * 0 = W1 * V12 + W2 * V22    (A)
(2)相対速度の比=反発係数
   V12 - V22 = -0.20 * (V10 - 0)           (B)
から、V12, V22 を求めることです。

 ちなみに蛇足ですが、W1, W2 の単位は「kg」であって「kgf」ではありません。「kgf」は「質量」ではなく「力」の単位です。(1 kgf = 9.8 N)

 重力加速度G=9.8m/s^2を使うなら...続きを読む

Qにゃんこ先生の自作問題、1,2,2,3,3,3,4,4,4,4,5,…の一般項をガウス記号を用いて書くには?

にゃんこ先生といいます。

1,2,2,3,3,3,4,4,4,4,5,…
という群数列の一般項を、ガウス記号などを用いて書くとどうにゃるのでしょうか?
a[n]=k
とすると、
第k群の最後の項は、
1+2+…+k=k(k+1)/2
より第k(k+1)/2項にゃので、
(k-1)k/2 < n ≦ k(k+1)/2
をkについて解けばいいのですが、具体的にはどうかけるのでしょうか?

また、
1,2,2,3,3,3,3,4,4,4,4,4,4,4,4,5,…
という群数列の一般項を、ガウス記号などを用いて書くとどうにゃるのでしょうか?

Aベストアンサー

※再訂正
ANo.1の結果
  An = k = [k] = [1 + √(8n - 7)]
   訂正 ⇒ An = [(1 + √(8n - 7))/2]

※追加
Excelで確認してみました.第16項まで表示しています.
○1つ目の群数列
n  (-1 + √(8n + 1))/2   (1 + √(8n - 7))/2    An
1      1            1            1
2      1.562          2            2
3      2            2.562          2
4      2.372          3            3
5      2.702          3.372          3
6      3            3.702          3
7      3.275          4            4
8      3.531          4.275          4
9      3.772          4.531          4
10      4            4.772          4
11      4.217          5            5
12      4.424          5.217          5
13      4.623          5.424          5
14      4.815          5.623          5
15      5            5.815          5
16      5.179          6            6

○2つ目の群数列
n   log(n + 1)/log2      log2n/log2       An
1      1            1            1
2      1.585          2            2
3      2            2.585          2
4      2.322          3            3
5      2.585          3.322          3
6      2.807          3.585          3
7      3            3.807          3
8      3.170          4            4
9      3.322          4.170          4
10      3.459          4.322          4
11      3.585          4.459          4
12      3.700          4.585          4
13      3.807          4.700          4
14      3.907          4.807          4
15      4            4.907          4
16      4.087          5            5

切り上げの関数を用いれば,左側でも表せますね.

※再訂正
ANo.1の結果
  An = k = [k] = [1 + √(8n - 7)]
   訂正 ⇒ An = [(1 + √(8n - 7))/2]

※追加
Excelで確認してみました.第16項まで表示しています.
○1つ目の群数列
n  (-1 + √(8n + 1))/2   (1 + √(8n - 7))/2    An
1      1            1            1
2      1.562          2            2
3      2            2.562          2
4      2.372          3  ...続きを読む

Qシリンダーの加速時間を考えた計算の式の意味がわかりません。 (1)の最大速度と、加速度の計算式は公式

シリンダーの加速時間を考えた計算の式の意味がわかりません。
(1)の最大速度と、加速度の計算式は公式ですか?
この式になる理由を教えてください。

Aベストアンサー

そもそも何を説明しようとしているものなのか、このページの「前段」の話がないとチンプンカンプンです。

おそらく、(1)の最大速度
 V = 2S / (t1 + 2*t2)
は、
 1/V = t1/2S + t2/S = (1/2)*1/(S/t1) + 1/(S/t2)
のような計算をしているのだと思いますが、グラフの中身や記載されているものの意味が分からないと、何とも言えません。

Qベクトル解析の線積分について。 ベクトル関数F(0,xyz,0)について頂点が(1,0,0),(0,

ベクトル解析の線積分について。
ベクトル関数F(0,xyz,0)について頂点が(1,0,0),(0,1,0),(0,0,1)である3角形の境界における線積分の値を求めよ。という問題を教えて頂きたいです。
できたらそのまま線積分する方法とストークスの定理を用いる方法を教えて頂けたら嬉しいです。

Aベストアンサー

これは答えだけなら簡単ですね。"0"です。
三角形の辺上でFは常に0→なので積分しても"0"になります。(x,y,zのいずれかが辺上で"0"です)

そのまま線積分する場合は3辺それぞれを次のようにパラメータ表示すればできます。
(1-t,t,0)
(0,1-t,t)
(t,0,1-t)
tの変域は自分で考えましょう。

ストークスの定理を使う場合は平面上の点を2変数で表す必要があります。
x,y座標が決まれば自動的にz座標は決まりますのでx,yをそのまま使えばよいでしょう。
次にこの面の法線ベクトルを求めます。対称性から(1,1,1)の定数倍であることは簡単にわかります。あとは大きさと符号だけの問題です。
rotF→の計算は地道に微分して計算するだけです。

Q変化する加速度の計算の仕方

ある交通シミュレータを使ってパラメータを調整しているのですが、実際にどれくらい減速していくのか分からず困っています。

速度22.2m/s(時速80km/h)で走っている車があります。
ある地点0から-1m/s2で減速していき、徐々に減速が大きくなり、100m進んだ時点では-2m/s2で減速します。
0地点から100mの間は一定に加速度が減っていきます。
(つまり50mの地点では-1.5m/s2、10mの地点では-1.1m/s2となる。)
100mの時点で速度はいくつになるのでしょうか。

等加速度運動ならば簡単なのですが加速が変化していくとどう計算したらよいか分かりません。
どなたかご教授よろしくお願いします。

Aベストアンサー

加速度が位置の関数になるので、次の微分方程式を解くことになります。

 d^2x/dt^2=-1-x/100

この解は x(0)=0, dx(0)/dt=22.2 を初期値として解くと

 x(t)=222sin(t/10)+100(cos(t/10)-1)

で、x(5.406)≒100となります。速度は上の式を時間で微分したもので

 v(t)=22.2cos(t/10)-10sin(t/10)

となるので t=5.406 s を代入すると 13.887 m/s となります。

Q何で数学I,II,III,IV,V,VIとか数学A,B,C,D,E,FじゃなくてI,II,IIIとA,B,Cなの

高校の数学についてのかなり阿呆な疑問なのですがなぜ数学I,II,III,IV,V,VIとか数学A,B,C,D,E,Fとかに統一しないで数学I数学A数学II学B数学III数学Cという風に区別されているのですか。
ところで自分はそんなに頭が良くないので優秀な回答を頂いても全く理解できない事も予想されます。
そういう場合は笑って許してください(汗)。

Aベストアンサー

>まーたぶん大した意味はないと思いますよ
ところが大ありなんですね。
既出の回答とも少し重なりますが,補足を兼ねてお答えしましょう。

現在の指導要領には次のような規定があります(来年の高校1年生から少し変わります)。
(1)「数学II」、「数学III」を履修させる場合は、「数学I」、「数学II」、「数学III」の順に履修させること。
(2)「数学A」については「数学I」と並行あるいは「数学I」に続いて履修させ、「数学B」及び「数学C」については「数学I」を履修した後に履修させること。
文部(科学)省は,「高校で数学を学ぶうえで中心(コア)となるもの」を易しいほうからI→II→IIIと配置し,それ以外をいわばオプションとしてA~Cとしたように思われます。

さらに,I~IIIとA~Cには非常に大きな違いがあります。

たとえば数学Iの内容は,もし学ぶのであればその内容(二次関数・三角比・場合の数・確率)を全部学ばないと,単位がとれません。数学II,数学IIIも同様です。
これに対して,数学Aは,数と式・平面幾何・数列・コンピュータの四単元からなっていますが,指導要領では「履修する生徒の実態に応じて、内容の(1)から(4)までの中から適宜選択させるものとする。」となっており,学校によって扱いはまちまちです。
コンピュータ(BASICのプログラミング)を省いている学校も結構ありますし,また参考書でも飛ばされていたりします。
(ところが入試だとプログラミングがある意味では一番易しいので,それを狙っていこう!という参考書もあったりします)
BやCも同様で,学校により扱いが異なります。

以上より,次のようなことが言えます。
たとえば,ある生徒が「学校で数学IIを習った」といっていれば,数学Iと数学IIの内容は全て授業でやっているはずです。
ところが,「数学Aを習った」というだけでは,実際に何を習っているかは分かりません。
このため,大学入試でも,数学A・B・Cはたいてい,それぞれの単元に対応する問題を並べておいてそのなかから選んで答えさせるようになっています。

No.2のカリキュラムは,1981年度に高校に入学した人までが学んだものです。
当時は,いわゆる受験校(進学校)の場合,おおまかにみて,
入試で数学を使わない人:「数学I→数学IIA」
数学を使う文系の人:「数学I→数学IIB」
理系の人:「数学I→数学IIB→数学III」
というパターンでカリキュラムを組んでいる学校が多かったように思います。
翌年登場したのが,「数学I」「基礎解析」「代数幾何」「確率統計」「微分積分」という科目分けで学んでいます。
その次(92年度入学者以降)に登場したのが現行のI~III,A~Cです。

>まーたぶん大した意味はないと思いますよ
ところが大ありなんですね。
既出の回答とも少し重なりますが,補足を兼ねてお答えしましょう。

現在の指導要領には次のような規定があります(来年の高校1年生から少し変わります)。
(1)「数学II」、「数学III」を履修させる場合は、「数学I」、「数学II」、「数学III」の順に履修させること。
(2)「数学A」については「数学I」と並行あるいは「数学I」に続いて履修させ、「数学B」及び「数学C」については「数学I」を履修した後に履修させること。
文部(科学...続きを読む

Q重力加速度 9.8m/s^2 は、計算値?

.
重力加速度 9.8m/s^2 は、計算値ですか?
または、計測値で、どうしてその値になるか分からないのですか?
また、重力の様に引き合う力ばかりで、反発するちから(斥力)が
存在しないのも、分かっているのですか?

宜しくお願いします。
.

Aベストアンサー

皆さんがおっしゃるように、実測値を基にした値です。

> どうしてその値になるか分からないのですか?

万有引力定数の値をより根源的な原理から計算できるのか否か? という問いですね。現在のところ、できていないようです。我々には宇宙に4つの力(電磁力、弱い相互作用、強い相互作用、重力)があるように見えているのですが、これらは一つの原理で説明できる筈だと考えられています。最初の二つ(電磁力、弱い相互作用)を統一的に説明する理論は数十年前に完成しており、さらに強い相互作用まで統一的に説明できるようになりつつあると聞いた覚えがあります。しかし、重力まで統一的に説明できるようになるのは、まだ先でしょう。重力まで統一的に説明できる完全理論が完成すれば、その理論に基づいて万有引力定数の値を計算することができるようになるでしょう。

> 斥力が存在しないのも、分かっているのですか?

分かっていません。アインシュタインは、重力によって宇宙が自己崩壊しないのは長距離(銀河団間距離以上)で効いてくる斥力(アインシュタインの宇宙項)があるためであると説明しました。初期のビッグバン理論では宇宙項が否定されていましたが、現在は必ずしも否定しきれないとされているようです。

ま、宇宙項は人類の手に負えるものではないので、ロケットには応用できないでしょうが。

皆さんがおっしゃるように、実測値を基にした値です。

> どうしてその値になるか分からないのですか?

万有引力定数の値をより根源的な原理から計算できるのか否か? という問いですね。現在のところ、できていないようです。我々には宇宙に4つの力(電磁力、弱い相互作用、強い相互作用、重力)があるように見えているのですが、これらは一つの原理で説明できる筈だと考えられています。最初の二つ(電磁力、弱い相互作用)を統一的に説明する理論は数十年前に完成しており、さらに強い相互作用まで統一...続きを読む

Qx1=(1,1,1),x2=(1,1,-1),x3=(1,-1,-1)をC^3の基底,{y1,y2,y3}がその双対基底でx=(0,1,0)の時,y1(x),y

[問] ベクトルx1=(1,1,1),x2=(1,1,-1),x3=(1,-1,-1)をC^3の基底とする。
{y1,y2,y3}がその双対基底でx=(0,1,0)の時、
y1(x),y2(x),y3(x)を求めよ。

という問題の解き方をお教え下さい。

双対基底とは
{f;fはF線形空間VからFへの線形写像}
という集合(これをV*と置く)において、
V(dimV=nとする)の一組基底を{v1,v2,…,vn}とすると
fi(vj)=δij(:クロネッカーのデルタ)で定めるV*の部分集合
{f1,f2,…,fn}はV*の基底となる。これを{v1,v2,…,vn}の双対基底と呼ぶ。

まず、
C^3の次元は6(C^3の基底は(1,0,0),(0,1,0),(0,0,1),(i,0,0),(0,i,0),(0,0,i))
だと思うので上記のx1,x2,x3は基底として不足してると思うのです(もう3ベクトル必要?)。

うーん、どのようにしたらいいのでしょうか?

Aベストアンサー

>C^3の次元は6(

これが間違え.
「x1=(1,1,1),x2=(1,1,-1),x3=(1,-1,-1)をC^3の基底」
といってるんだから,係数体はRではなく,C.

あとは定義にしたがって,
dualな基底を書き下せばいいだけ.
y1(x1)=1,y1(x2)=y1(x3)=0であって
v=ax1+bx2+cx2と表わせるわけだし,
v=(v1,v2,v3)とすれば,a,b,cはv1,v2,v3で表現できる
#単なる基底変換の問題.


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング

おすすめ情報