直列のRC回路があり、実験値でτを求めたのですが、
理論値でも出すよう、指示が出ました。

色々調べたのですが、τ=RCに出る段階がよく分かりません。

V(抵抗)+V(コンデンサー)=Vo を使って求めていくのはいいのですが、どうやったら、すっきりとτ=RCがでるのですか?
実験器具は下図のようになってます。
発信機からは方形波が出ています。
_______________
| |
| |
発信機 =
| |
| |
| >
| <
| >
_______________|

このQ&Aに関連する最新のQ&A

A 回答 (1件)

質問者さんの仰るように


 V_R + V_C = V_0     …(1)
を使います.

オームの法則 V = IR,電気容量の定義式 Q = CV より
(1) 式は
 IR + Q/C = V_0
となるので,dQ/dt = I に注意して両辺時間で微分すると
 (dI/dt)R + I/C = 0
という微分方程式を得ます.

これを解くことで
 I = I_0 * exp{-t/(RC)}
が出てきます.
    • good
    • 0

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q時定数の求め方について

始めまして、初めて質問します。

「電源、抵抗R、コンデンサCを直列に接続し、さらにコンデンサに並列に抵抗rを接続した場合」の時定数はどうなるのでしょうか?
電源、抵抗R、コンデンサCを直列に接続しただけのRC回路の時定数はRCになる事は導けたのですが、コンデンサに抵抗rを並列接続しただけでどうしたらよいのかわからなくなってしまいました。

どうかよろしくお願いいたします。

Aベストアンサー

R・i1+r・i3=E・・・・・(1)
q/C=r・i3・・・・・(2)
i1=i2+i3・・・・(3)
(1)(2)(3)の式からi1を解くと、
τ=C・R・r/(R+r)に成ります。
参考に
i1=E/(R+r)・{1+ε^-(R+r)t/(CRr)}

Q時定数について

時定数(τ=CR)について物理的意味とその物理量について調べているのですが、参考書等これといってわかりやすい説明がありません。どうが上記のことについて詳しく説明してもらえないでしょうか?

Aベストアンサー

1次応答のお話ですね。
物理の世界では「1次応答」と呼ばれる系をしばしば扱います。その系の応答の時間的尺度を表す数字が「時定数」です。物理量としては時間の次元を持ち、時間と同様に秒や分などを単位に表現できます。

直感的には「水槽から出て行く水」のアナロジーで考えると分かりやすいと思います。いま水槽があって下部に蛇口が付いているとします。蛇口をひねると水は流れ出ますが、水が流れ切ってしまうまでにどれくらい時間がかかるでしょうか。
明らかに水槽が大きいほど、そして蛇口が小さいほど時間がかかります。逆に水槽が大きくても蛇口も大きければ水は短時間で出て行きますし、蛇口が小さくても水槽が小さければこれまたすぐに水槽はからっぽになります。
すなわち水がからっぽになるまでに要する時間の目安として
 水槽の大きさ×蛇口の小ささ
という数字が必然的に出てきます。ご質問の電気回路の場合は
 コンデンサの容量→水槽の大きさ
 抵抗→蛇口の小ささ
に相当するわけで、CとRの積がその系の応答の時間的な目安を与えることはなんとなくお分かり頂けると思います。

数式を使いながらもう少し厳密に考えてみましょう。以下のようにコンデンサCと抵抗Rとからなる回路で入力電圧と出力電圧の関係を調べます。
 + C  -
○─┨┠─┬──●
↑    <  ↑
入    <R  出
力    <  力
○────┴──●

入力電圧をV_i、出力電圧をV_oとします。またキャパシタCに蓄積されている電荷をQとします。
するとまず
V_i = (Q/C) + V_o   (1)
の関係があります。
また電荷Qの時間的変化が電流ですから、抵抗Rの両端の電位差を考えて
(dQ/dt)・R = V_o   (2)
も成立します。
(1)(2)を組み合わせると
V_i = (Q/C) + (dQ/dt)・R   (3)
の微分方程式を得ます。

最も簡単な初期条件として、時刻t<0でV_i = 0、時刻t≧0でV_i = V(定数)となるステップ応答を考えます。コンデンサCは最初は帯電していないとします。
この場合(3)の微分方程式は容易に解かれて
V_o = A exp (-t/CR)   (4)
を得ます。exp(x)はご存じかと思いますがe^xのこと、Aは定数です。解き方が必要なら最後に付けておきましたので参考にして下さい。
Cは最初は電荷を蓄積していないのですから、時刻t=0において
V_i = V = V_o   (5)
という初期条件が課され、定数Aは実はVに等しいことが分かります。これより結局、
V_o = V exp (-t/CR)   (6)
となります。
時間tの分母にCRが入っているわけで、それが時間的尺度となることはお分かり頂けると思います。物理量として時間の次元を持つことも自明でしょう。CとRの積が時間の次元を持ってしまうのは確かに不思議ではありますが。
(6)をグラフにすると下記の通りです。時刻t=CRで、V_oはV/e ≒0.368....Vになります。

V_o

* ←初期値 V        
│*
│ *
│   *         最後は0に漸近する
│      *       ↓
└───┼──────*───*───*───*─→t
t=0  t=CR
   (初期値の1/e≒0.368...倍になったタイミング)


【(1)(2)の解き方】
(1)の両辺を時間tで微分する。V_iは一定(定数V)としたので
0 = (1/C)(dQ/dt) + (dV_o/dt)
(2)を代入して
0 = (1/CR) V_o + (dV_o/dt)
-(1/CR) V_o = (dV_o/dt)
- dt = dV_o (CR/V_o)
t = -CR ln|V_o| + A
ここにlnは自然対数、Aは定数である。
この式は新たな定数A'を用いて
V_o = A' exp (-t/CR)
と表せる。

1次応答のお話ですね。
物理の世界では「1次応答」と呼ばれる系をしばしば扱います。その系の応答の時間的尺度を表す数字が「時定数」です。物理量としては時間の次元を持ち、時間と同様に秒や分などを単位に表現できます。

直感的には「水槽から出て行く水」のアナロジーで考えると分かりやすいと思います。いま水槽があって下部に蛇口が付いているとします。蛇口をひねると水は流れ出ますが、水が流れ切ってしまうまでにどれくらい時間がかかるでしょうか。
明らかに水槽が大きいほど、そして蛇口が小さい...続きを読む

Q一次遅れ系の制御における時定数Tの求め方

計量士の資格を勉強していると自動制御の問題が出てきました。

単位ステップ応答は1-exp(t/T)である。
一次遅れ系の時定数Tの求め方として2つの方法がある。
一つは、1-exp(-t/T)が63.2%になったとき。
もう一つは、過渡応答曲線の原点での接線が定常値に交わるまでの原点からの時間を求める。
とあります。
ここで質問なのですが、この過渡応答曲線とは、1-exp(-t/T)の曲線のことでしょうか?

また単位インパルス応答はexp(-t/T)です。
これが36.8%になったとき時定数Tを求められることは知っているのですが、
同様に、過渡応答曲線の原点での接線が定常値に交わるまでの
原点からの時間を求めると時定数Tを求められるのでしょうか?

Aベストアンサー

>この過渡応答曲線とは、1-exp(-t/T)の曲線のことでしょうか?
そうです。
t=Tとおくと、このときの振幅v(T)=1-exp(-T/T)=1-exp(-1)≒0.6321
と定常値の振幅1に対して0.6321は63.21%にあたります。

>原点からの時間を求めると時定数Tを求められるのでしょうか?
求められます。

過渡応答曲線v(t)=exp(-t/T)に対して、t=0における接線は
u(t)=1-(t/T)ですので、u(t)=0(定常値)になる時間は
1-(t/T)=0からt=T(時定数)が求められます。
このときの振幅はv(T)=exp(-T/T)=exp(-1)≒0.3679
これは定常値(0)までの振幅1に対して36.79%にあたります。

Q計算値と理論値の誤差について

交流回路の実験をする前に、ある回路のインピーダンスZ(理論値)を計算で求めたあと、実験をしたあとの測定値を利用して、同じ所のインピーダンスZ(計算値)を求めると理論値と計算値の間で誤差が生じました。
そこでふと思ったのですが、なぜ理論値と計算値の間で誤差が生じるのでしょうか?また、その誤差を無くすことはできるのでしょうか? できるのなら、その方法を教えてください。
あと、その誤差が原因で何か困る事はあるのでしょうか?
教えてください。

Aベストアンサー

LCRのカタログ値に内部損失や許容誤差がありますが、この誤差は
1.Rの抵抗値は±5%、±10%、±20% があり、高精度は±1%、±2%もあります。
2.Cの容量誤差は±20% 、+50%・ー20% などがあり
3.Lもインダクタンス誤差は±20%で、
3.C・Rは理想的なC・Rでは無く、CにL分、Lに抵抗分の損失に繋がる成分があります。
これらの損失に繋がる成分は、試験周波数が高くなると、周波数依存で増大します。
また、周囲温度やLCRの素子自身で発生する自己発熱で特性が変化します。
測定器や測定系にも誤差が発生する要因もあります。
理論値に対する測定値が±5%程度発生するのは常で、実際に問題にならないように、
LCRの配分を工夫すると誤差やバラツキを少なく出来ます。
 

Q時定数の単位次元について

こんにちは♪ちょっと質問なんですが、時定数τ=RCっていう公式ありますよね?これってどう考えても単位が合わないですぅ・・・抵抗とコンデンサー容量かけても時間には・・・・気になるので早く教えてくださいお願いします

Aベストアンサー

合っていますよ。
[抵抗]=[電圧]/[電流]
[静電容量]=[電荷]/[電圧]
[電流]=[電荷]/[時間]
ですから、
[抵抗]×[静電容量]
=([電圧]/[電流])×([電荷]/[電圧])
=[電荷]/[電流]
=[電荷]/([電荷]/[時間])
=[時間]
です。

Qエクセルで片対数グラフを作る

エクセルで片対数グラフを作る方法を詳しく教えてください。お願いします。

Aベストアンサー

グラフの数値軸のところで右クリックして
軸の書式設定(O)→目盛(タブ名)

対数目盛を表示する(L)
にチェックを入れてください。

Qτ ←この記号について教えてください

この記号「τ」は何を表しているのでしょうか?
読み方は「タウ」でいいのでしょうか?

お詳しい方どうか教えてください。

Aベストアンサー

読み方は「タウ」で結構です。
英語の「T」に相当します。

x,y,zと同様に何に使っても間違いではありませんが、Tに関連する用途が多いでしょう。

一般的には、時間、温度、換算温度、τ中間子というのありましたし、材料力学の世界では、せん断応力をτで表わします。

Qカットオフ周波数とは何ですか?

ウィキペディアに以下のように書いてました。

遮断周波数(しゃだんしゅうはすう)またはカットオフ周波数(英: Cutoff frequency)とは、物理学や電気工学におけるシステム応答の限界であり、それを超えると入力されたエネルギーは減衰したり反射したりする。典型例として次のような定義がある。
電子回路の遮断周波数: その周波数を越えると(あるいは下回ると)回路の利得が通常値の 3 dB 低下する。
導波管で伝送可能な最低周波数(あるいは最大波長)。
遮断周波数は、プラズマ振動にもあり、場の量子論における繰り込みに関連した概念にも用いられる。


ですがよくわかりません。
わかりやすく言うとどういったことなのですか?

Aベストアンサー

>電子回路の遮断周波数: その周波数を越えると(あるいは下回ると)回路の利得が通常値の 3 dB 低下する。
>導波管で伝送可能な最低周波数(あるいは最大波長)。
>遮断周波数は、プラズマ振動にもあり、場の量子論における繰り込みに関連した概念にも用いられる。

簡単にいうと、一口に「カットオフ周波数」と言っても分野によって意味が違う。
電子回路屋が「カットオフ周波数」と言うときと、導波管の設計屋さんが「カットオフ周波数」と言うとき
言葉こそ同じ「カットオフ周波数」でも、意味は違うって事です。



電子回路の遮断周波数の場合
-3dB はエネルギー量にして1/2である事を意味します。
つまり、-3dBなるカットオフ周波数とは

「エネルギーの半分以上が通過するといえる」

「エネルギーの半分以上が遮断されるといえる」
の境目です。

>カットオフ周波数は影響がないと考える周波数のことでよろしいでしょうか?
いいえ
例えば高い周波数を通すフィルタがあるとして、カットオフ周波数が1000Hzの場合
1010Hzだと51%通過
1000Hzだと50%通過
990Hzだと49%通過
というようなものをイメージすると解り易いかも。

>電子回路の遮断周波数: その周波数を越えると(あるいは下回ると)回路の利得が通常値の 3 dB 低下する。
>導波管で伝送可能な最低周波数(あるいは最大波長)。
>遮断周波数は、プラズマ振動にもあり、場の量子論における繰り込みに関連した概念にも用いられる。

簡単にいうと、一口に「カットオフ周波数」と言っても分野によって意味が違う。
電子回路屋が「カットオフ周波数」と言うときと、導波管の設計屋さんが「カットオフ周波数」と言うとき
言葉こそ同じ「カットオフ周波数」でも、意味は違うって事です...続きを読む

QRC時定数の求め方について

下記2つのRC回路の時定数の求め方を教えて下さい。
色々と調べましたが解りません。

どうか宜しく御願い致します。

Aベストアンサー

1kΩの抵抗を図のように電源の左側に移動して見てください。
抵抗には常に10mAの一定電流しか流れないので時定数には影響しません。
I(t)-10mA についてのみ時定数を考えればいいのです。

時定数はどちらも 5kΩx1uF です。

Qlogとln

logとln
logとlnの違いは何ですか??
底が10かeかということでいいのでしょうか?
大学の数学のテストでlogが出てきた場合は底が10と解釈してよいのでしょうか??
解説お願いします!!

Aベストアンサー

こんにちは。

>>>logとlnの違いは何ですか??

「自然対数」は、natural logarithm の訳語です。
「ln」というのは、「logarithm 。ただし、natural の。」ということで、つまり「自然対数」という意味です。
一方、log というのは、底がeなのか10なのかがはっきりしません。


>>>大学の数学のテストでlogが出てきた場合は底が10と解釈してよいのでしょうか??

数学であれば、底がeの対数(自然対数)です。底が10の対数(常用対数)ではありません。
一方、log は、数学以外であれば不明確な場合があります。

私の大学時代と仕事の経験から言いますと・・・

【eを用いるケース】
・数学全般(log と書きます)
・電子回路の信号遅延の計算(ln と書く人が多いです)
・放射能、および、放射性物質の減衰(log とも ln とも書きます。ただし、eではなく2を使うこともあります。)

【10を用いるケース】(log または log10 と書きます)
・一般に、実験データや工業のデータを片対数や両対数の方眼紙でまとめるとき(挙げると切りがないほど例が多い)
・pH(水溶液の水素イオン指数・・・酸性・中性・アルカリ性)
・デシベル(回路のゲイン、音圧レベル、画面のちらつきなど)

ご参考になれば。

こんにちは。

>>>logとlnの違いは何ですか??

「自然対数」は、natural logarithm の訳語です。
「ln」というのは、「logarithm 。ただし、natural の。」ということで、つまり「自然対数」という意味です。
一方、log というのは、底がeなのか10なのかがはっきりしません。


>>>大学の数学のテストでlogが出てきた場合は底が10と解釈してよいのでしょうか??

数学であれば、底がeの対数(自然対数)です。底が10の対数(常用対数)ではありません。
一方、log は、数学以外であれば不明確な場...続きを読む


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング

おすすめ情報