はじめての親子ハイキングに挑戦!! >>

はじめまして、shigure2005と申します。

現在、いくつか連なる因果関係を持ったデータの
解析をしようと思っているのですが、因果関係を
表現するのに適したモデルの表記法にはどのような
ものがあるのでしょうか?
因果関係は以下のようになってます。矢印の左が
原因、右が結果となります。
100個くらいのデータ→5つくらいのデータ→一つのデータ

また、その表現方法に必要な知識の書かれたお勧めの
本などがありましたら教えてください。現在、
グラフィカルモデリングなるものがこれに当たる
のではないかと考え、宮川氏の「グラフィカル
モデリング」を借り、これから読もうと考えております。
ベイズなどのモデルもあると聞いたのですが、
ご存知の方がいらしたら、どうぞよろしくお願いします。

このQ&Aに関連する最新のQ&A

A 回答 (3件)

グラフィカルモデルはグラフを用いてモデリングをすることの総称のようなものです。

その一つにBayesian Networkもあります。

Bayesian Networkは全体の確率を変数間の条件付確率の積(結合確率分布)により表現するモデルになっています。一般的にはこの条件付確率はCPテーブルで計算されるので、変数の属性はカテゴリタイプとなります。

変数の属性が数値変数であれば、共分散構造分析という手法があります。基本的にはパス解析と因子分析の合体したようなものになり、潜在変数を取り扱うことも可能です。(新たな変数というのがこれのことならだが。。。)

共分散構造解析の本は検索すれば色々出てくると思いますので一つだけ。「多変量解析の展開」 岩波書店 統計科学のフロンティア 5を挙げておきます。

Bayesian Networkの本は和書は良く知りません。洋書ですが、「Bayesian Networks and Decision Graphs」 Springer Statistics for Engineering and Information Science. Jensen著
HUGINというソフトウエアを作った人の本です。
    • good
    • 0
この回答へのお礼

ご回答ありがとうございます。

そのような仕組みになっているんですね。私は生物系の研究を
しており、解析の必要性から統計学を勉強し始め、
現在がむしゃらに基礎統計を覚えている状況です。本を引けば
だいたい論文や本は読めるようになったのですが、全体の
体系的な構造や、概念がいまいちつかめていません。

調べていたときに、webで「統計解析では厳密には因果関係を
求めることはできない」というような記述があったので、
多少混乱しております。
2変数間の因果関係を求めるときには回帰分析、多変数間の
複雑な因果のネットワークを解析するときには、質的変数なら
Bayesian Network、量的変数なら共分散構造解析を使うという
理解でよろしいでしょうか? 

どうぞよろしくお願いします。

お礼日時:2005/10/05 12:33

答えになっていないかもしれませんが。



因果関係というのは深遠なものです。その意味で、統計解析では厳密な意味では因果関係はわからないでしょう。そもそも、厳密な意味での因果関係というのも定義できないかもしれません。。。

そうは言ってもある程度のことはわかります。以下に、わからない例を簡単に紹介します。(先に紹介した本の中にあります)

よく当たる天気予報というのが合ったとします。その場合、データを分析すると、天気予報が晴れといえば晴れる。雨といえば雨が降る。ということが判ります。このことから、天気予報が明日の天気の原因になっているといえるか?ということですね。現実のメカニズムを知っていればこのような間違いは犯しませんが、データからはこういう結果が得られることもあるということです。

実際に分析をする時にはこのようなことを気をつける必要があります。実際、Bayesian Networkなどでは確率分布的に等価なグラフを幾つも書くことが可能です。

最後に、回帰分析は単回帰でなく重回帰分析では多変数と1変数との間の関連を求めることが出来ます。本質的な違いは、どの変数でどの変数を回帰するかを最初に使う側が指定するところにあります。
    • good
    • 0
この回答へのお礼

ご回答ありがとうございます。

因果関係は確かに、厳密な定義ということを考えると
なかなか難しいですね。そこにはヒューリスティック
な判断が介在し、「この閾値以上で、かつこれらは実験的にも
因果の関係がありそうだ」ということであれば、因果関係と
いうようになるんですね。

また回帰分析についても、ご指摘ありがとうございます。
非常に参考になりました。

またご質問することがあるかもしれませんが、その際には
どうぞよろしくお願いします。

お礼日時:2005/10/06 11:47

因果関係をグラフ表現したい という意味でしょうか?


ご質問で書かれているように

 100個くらいのデータ→5つくらいのデータ→一つのデータ

となっていることが、すでにわかっているのであれば、あとは変数間の依存関係を統計的手法で明らかにしていくことが、次のステップのように思えます。
とりあえず、グラフィカルモデリングをお読みになれば、よいのではないでしょうか?

ベイズのモデルというのは、おそらくベイジアンネットのことかと思います。ベイジアンネットワークもしくはベイジアンネットで検索してみてください。
構築のための支援ソフトウエアも市販されています。
    • good
    • 0
この回答へのお礼

ご回答ありがとうございます。

やりたいことは、現在わかっているこの因果関係と、
それぞれの変数のデータを用いて、新たな変数間の
因果関係、そして、それらの強さを求めることなのです。
グラフで表現するというのは、それを実現する
ために役に立つかと思って調べている状況です。

すでにわかっているデータ、因果関係を効率よく
利用して、そのようなことを行う方法としては、ほかに
どのようなものがあるのでしょうか?

お礼日時:2005/10/04 15:29

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q相関関係と因果関係

統計学では相関をとることはできるようですが、因果関係を求める方法はないのですか?

Aベストアンサー

>因果関係を求める方法はないのですか?
求める方法はありませんが、判定する方法はあります。

 相関性は、因果関係の有無を判断・提唱するためです。そうでないなら、無意味です。ただ、勘違いされがちなのは、統計的に有意な相関(相関係数とデータ数からt-検定)があれば、因果関係が成立するわけではありません。

 因果関係が成立するには、有意な相関があること、これが大前提です。これを密接性といいます。
 その他に、時間性、普遍性、特異性、合理性をすべて満たす必要があります(重松逸造「疫学とは何か」、講談社ブルーバックスのB320)。

 この5要件をすべて満たせば因果関係は成立すると判断します。一つでも欠けていると、因果関係は成立しません。すなわち、有意な相関が無いと、密接性の要件に反するので、因果関係は成立しない、と判定します。すなわち、有意な相関性がなければ、「因果関係は無い」と断言します。それでも、データ数を増やせば、有意になる場合が多いので、主張する人はいませんが。

 5要件の中で、いちばんやっかいなのが、合理性。これは、科学でなく、日常的な経験に基づく判断だからです。例えば、みかんの消費量と風邪の患者数の相関では、合理性以外は、すべて満たすでしょう。しかし、「みかんを食べて風邪になる」というのは、『おかしい』と感じます。これは、経験です。『みかんは冬に食べる、風邪も冬に流行る』というのは、経験に基づく判断です。ひょっとすると、「みかんには、風邪のウィルスかその働きを助けるものがあるのかもしれない」と説明されると、科学的な否定は、困難です。

 5要件でなく、7要件、9要件を提唱する学者もいます。

>因果関係を求める方法はないのですか?
求める方法はありませんが、判定する方法はあります。

 相関性は、因果関係の有無を判断・提唱するためです。そうでないなら、無意味です。ただ、勘違いされがちなのは、統計的に有意な相関(相関係数とデータ数からt-検定)があれば、因果関係が成立するわけではありません。

 因果関係が成立するには、有意な相関があること、これが大前提です。これを密接性といいます。
 その他に、時間性、普遍性、特異性、合理性をすべて満たす必要があります(重松逸造「疫...続きを読む

Qパス解析

パス解析って、どういった分析なのですか?SPSSでも出来るものなのですか?私は論文でパス解析の結果の図しか見たことないので、どういったものなのか知りたいです。今のところの私のパス解析による分析に対する結果の解釈方法は、重回帰分析の繰り返しを行っているといった感じです。ただ、実際にSPSSなどを使って重回帰分析を繰り返しやっていると、場合によっては恐ろしく手間がかかると思いますので、専用のソフト(フリーを含む)などで出来るものはないのかと思っています。宜しくお願いします。

Aベストアンサー

こんにちは.
パス解析については詳しくないのですが,論文などを読んだ感じでは少しばかり,この解析法については混乱があるような気がします.

パス解析とは,質問者さんが見たことがある「パス図」として表示することを最終目標とした図と考えるのが混乱が少ないような気がします.
パスというのは,ある変数とある変数との間の関連性の経路(pass)のことですね.その意味では変数と変数との関連性を示している解析法はパス解析となりますが,複数のパスを描く必要がある……その場合を特別にパス解析と呼ぶのが通例のような気がします.複数のパスを描くとは,すなわち複数の変数の関係性を調べる訳なので,多くの多変量解析は図的表現をすれば,パス解析と呼ぶことができると思われます.
その意味では,パス解析とは特定の統計手法を指すのではなく,ある意味では多変量解析の別名と考えると混乱が少なくなるのではないか,と思います.

しかし,もう少し限定的な意味で「パス解析」とは次の二種類があるようです.

・単純な重回帰分析の繰り返しによるパス解析
・共分散構造分析によるパス解析

昔はパス解析といえば「単純な重回帰分析の繰り返し」を意味したようです.少なくともパス解析の開発初期においてはその意味で使われていたように思われます.しかし重回帰分析は潜在変数(因子)を扱うことができないなどの欠点がありました.
そして最近流行になっている共分散構造分析では,因子を扱いながら重回帰分析のような影響性の関係を調べることができるようになり,より優れたパス図の作成をすることができます.

このような流れがあるようなので,パス解析という言葉の意味である「変数と変数の間の経路を解析する」を厳密に考えるならば,昔のような「単純な重回帰分析の繰り返し」だけでなくなり,現在のような「共分散構造分析」によるパス解析も含めるのが当然となります.

さて,具体的にパス解析をどのように実行すればよいかですが,ようするにパスをかけるのならばよいわけですから,No1さんが仰られているようにSPSSの「重回帰分析」を繰り返して使うというものでもかけますし,また,SPSSのアドインソフト(単独でも使えますが)である「Amos」というソフトを使って「共分散構造分析」を使ってパス解析をすることもできます.
なお,SPSSで「重回帰分析の単純な繰り返し」法では,確かに大変ですが,共分散構造分析が普及していなかった時代は,大変であろうがとにかくやるしかなかったわけです.そして手計算に比べれば手間がかかるといってもたかがしれているわけです.研究者は自分の持つデータに対する分析はいろいろと,それこそうんざりするぐらい分析を行いますのであまり手間をかけるという発想はないのではないか,と思います.
しかし,どうしてもいっぺんにやりたいというのであれば,Amosなどの共分散構造分析ソフトを使うようになります.現在では「単純な重回帰分析の繰り返し」の専門ソフトに対する需要は少ないと思うので開発されていないのでは,と思います(この辺はおもいっきり自信なし).

こんにちは.
パス解析については詳しくないのですが,論文などを読んだ感じでは少しばかり,この解析法については混乱があるような気がします.

パス解析とは,質問者さんが見たことがある「パス図」として表示することを最終目標とした図と考えるのが混乱が少ないような気がします.
パスというのは,ある変数とある変数との間の関連性の経路(pass)のことですね.その意味では変数と変数との関連性を示している解析法はパス解析となりますが,複数のパスを描く必要がある……その場合を特別にパス解析と呼...続きを読む

Q相関係数についてくるP値とは何ですか?

相関係数についてくるP値の意味がわかりません。

r=0.90 (P<0.001)

P=0.05で相関がない

という表現は何を意味しているのでしょうか?
またMS Excelを使ってのP値の計算方法を教えてください。

よろしくお願い致します。

Aベストアンサー

pは確率(probability)のpです。全く相関のない数字を組み合わせたときにそのr値が出る確率をあらわしています。

統計・確率には100%言い切れることはまずありません。というか100%言い切れるのなら統計・確率を使う必要は有りません。
例えばサイコロを5回振って全て同じ目が出る確率は0.08%です。そんな時、そのサイコロを不良品(イカサマ?)と結論つけるとわずかに間違っている可能性が残っています。ただ、それが5%以下ならp=0.05でそのサイコロは正常ではないと結論付けます。
それが危険率です。(この場合はp=0.1%でもいいと思いますが)
相関係数においても相関の有無を結論つけるにはそのrが偶然出る確率を出すか、5%の確率ならrがどれぐらいの値が出るかを知っておく必要が有ります。

>r=0.90 (P<0.001)

相関係数は0.90と計算された。相関がないのに偶然r=0.90 となる確率は0.001以下だと言ってます。

>P=0.05で相関がない

相関がないと結論。(間違っている確率は5%以下)だと言ってます。

エクセルでの計算ですが、まず関数CORRELを使ってr値を出します。xデータがA1からA10に、yデータがB1からB10に入っているとして

r=CORREL(A1:A10,B1:B10)

次にそのr値をt値に変換します。

t=r*(n-2)^0.5/(1-r^2)^0.5

ここでnは組みデータの数です。((x1,y1),(x2,y2),・・・(xn,yn))
最後に関数TDISTで確率に変換します。両側です。

p=TDIST(t値,n-2,2)

もっと簡単な方法があるかも知れませんが、私ならこう計算します。(アドインの分析ツールを使う以外は)

pは確率(probability)のpです。全く相関のない数字を組み合わせたときにそのr値が出る確率をあらわしています。

統計・確率には100%言い切れることはまずありません。というか100%言い切れるのなら統計・確率を使う必要は有りません。
例えばサイコロを5回振って全て同じ目が出る確率は0.08%です。そんな時、そのサイコロを不良品(イカサマ?)と結論つけるとわずかに間違っている可能性が残っています。ただ、それが5%以下ならp=0.05でそのサイコロは正常ではないと結論付けます。
それが危険率です。(この場...続きを読む

Q相関分析の相関係数と重回帰分析の偏回帰係数の違いの説明

実は会社での説明に苦慮しています。
例えば、携帯電話の(1)メーカー/(2)デザイン/(3)機能の(4)購入意向、に対する影響度を見たい、という時に、重回帰分析における偏回帰係数で(1)(2)(3)の(4)に対する影響度を測ろうとしているのですが、「(4)と(1)(2)(3)それぞれの相関の高さで見るのと何が違うのか?」と聞かれてしまい、回答に窮しています。あまり統計に詳しくない人(私もそうですが)に対し、うまく説明する方法はないでしょうか。
どなたかお知恵をいただきたく、よろしくお願いします。

Aベストアンサー

相関分析と重回帰分析の違いは、説明変数を一つとするか複数にするかの違いです。
 目的とするもの(従属変数、数式ではy)に影響するものが、説明変数(数式ではx)です。

 プロ野球を例に取ると、野球はピッチャーだ、といわれます。そこで、過去数年間について、ピッチャーのチーム防御率だけをXとし(説明変数が単数)、その年の順位をyとして、分析するのが単回帰分析です。
 しかし、いくらピッチャーが良くても、打てなければ勝てません。そこで、バッターの打率も考える必要があります。すなわち、チームの防御率をX1、チームの打率をx2、すなわち、説明変数を複数(2つ以上)採り、順位yの推定を行うのが、重回帰分析です。
 このように、単回帰分析よりも、重回帰分析の方が、必ず相関係数が高くなります。すなわち、結果の推定の確実性が増すわけです。相関係数が、1.0になれば、説明変数の事柄だけで、従属変数の事柄が決定できます。すなわち、100%的中します。

 単回帰では、防御率、打率とも、相互の影響は考慮されていません。従って、防御率と打率のどちらが影響力が強いのかは、相関係数から予測はできるものの、決定できません。選手をとる場合、同じ年俸を払うのに、ピッチャーとバッターのどちらを補強したら効果的かは、判断が困難です。
 このとき、どちらの影響が強いかを推定できるのが、重回帰分析です。そのために利用するのが、偏回帰係数ですが、変数の単位に左右されるので、注意を要するところです。

 「単回帰では、(1)(2)(3)のどれが最も効果的かは、判断できません」が答えでしょうか。
 釈迦に説法の点は、ご容赦を。
  

相関分析と重回帰分析の違いは、説明変数を一つとするか複数にするかの違いです。
 目的とするもの(従属変数、数式ではy)に影響するものが、説明変数(数式ではx)です。

 プロ野球を例に取ると、野球はピッチャーだ、といわれます。そこで、過去数年間について、ピッチャーのチーム防御率だけをXとし(説明変数が単数)、その年の順位をyとして、分析するのが単回帰分析です。
 しかし、いくらピッチャーが良くても、打てなければ勝てません。そこで、バッターの打率も考える必要があります。すなわち、チー...続きを読む

Q統計学的に信頼できるサンプル数って?

統計の「と」の字も理解していない者ですが、
よく「統計学的に信頼できるサンプル数」っていいますよね。

あれって「この統計を調べたいときはこれぐらいのサンプル数があれば信頼できる」という決まりがあるものなのでしょうか?
また、その標本数はどのように算定され、どのような評価基準をもって客観的に信頼できると判断できるのでしょうか?
たとえば、99人の専門家が信頼できると言い、1人がまだこの数では信頼できないと言った場合は信頼できるサンプル数と言えるのでしょうか?

わかりやすく教えていただけると幸いです。

Aベストアンサー

> この統計を調べたいときはこれぐらいのサンプル数があれば信頼できる・・・
 調べたいどの集団でも、ある一定数以上なら信頼できるというような決まりはありません。
 何かサンプルを集め、それをなんかの傾向があるかどうかという仮説を検証するために統計学的検定を行って、仮設が否定されるかされないかを調べる中で、どの検定方法を使うかで、最低限必要なサンプル数というのはあります。また、集めたサンプルを何か基準とすべき別のサンプルと比べる検定して、基準のサンプルと統計上差を出すに必要なサンプル数は、比べる検定手法により計算できるものもあります。
 最低限必要なサンプル数ということでは、例えば、ある集団から、ある条件で抽出したサンプルと、条件付けをしないで抽出したサンプル(比べるための基準となるサンプル)を比較するときに、そのサンプルの分布が正規分布(正規分布解説:身長を5cmきざみでグループ分けし、低いグループから順に並べたときに、日本人男子の身長なら170cm前後のグループの人数が最も多く、それよりも高い人のグループと低い人のグループの人数は、170cmのグループから離れるほど人数が減ってくるような集団の分布様式)でない分布形態で、しかし分布の形は双方とも同じような場合「Wilcoxon符号順位検定」という検定手法で検定することができますが、この検定手法は、サンプルデータに同じ値を含まずに最低6つのサンプル数が必要になります。それ以下では、いくらデータに差があるように見えても検定で差を検出できません。
 また、統計上差を出すのに必要なサンプル数の例では、A国とB国のそれぞれの成人男子の身長サンプルがともに正規分布、または正規分布と仮定した場合に「t検定」という検定手法で検定することができますが、このときにはその分布を差がないのにあると間違える確率と、差があるのにないと間違える確率の許容値を自分で決めた上で、そのサンプルの分布の値のばらつき具合から、計算して求めることができます。ただし、その計算は、現実に集めたそれぞれのサンプル間で生じた平均値の差や分布のばらつき具合(分散値)、どのくらいの程度で判定を間違える可能性がどこまで許されるかなどの条件から、サンプル間で差があると認められるために必要なサンプル数ですから、まったく同じデータを集めた場合でない限り、計算上算出された(差を出すために)必要なサンプル数だけサンプルデータを集めれば、差があると判定されます(すなわち、サンプルを無制限に集めることができれば、だいたい差が出るという判定となる)。よって、集めるサンプルの種類により、計算上出された(差を出すために)必要なサンプル数が現実的に妥当なものか、そうでないのかを、最終的には人間が判断することになります。

 具体的に例示してみましょう。
 ある集団からランダムに集めたデータが15,12,18,12,22,13,21,12,17,15,19、もう一方のデータが22,21,25,24,24,18,18,26,21,27,25としましょう。一見すると後者のほうが値が大きく、前者と差があるように見えます。そこで、差を検定するために、t検定を行います。結果として計算上差があり、前者と後者は計算上差がないのにあると間違えて判断する可能性の許容値(有意確率)何%の確率で差があるといえます。常識的に考えても、これだけのサンプル数で差があると計算されたのだから、差があると判断しても差し支えないだろうと判断できます。
 ちなみにこの場合の差が出るための必要サンプル数は、有意確率5%、検出力0.8とした場合に5.7299、つまりそれぞれの集団で6つ以上サンプルを集めれば、差を出せるのです。一方、サンプルが、15,12,18,12,21,20,21,25,24,19の集団と、22,21125,24,24,15,12,18,12,22の集団ではどうでしょう。有意確率5%で差があるとはいえない結果になります。この場合に、このサンプルの分布様式で拾い出して差を出すために必要なサンプル数は551.33となり、552個もサンプルを抽出しないと差が出ないことになります。この計算上の必要サンプル数がこのくらい調査しないといけないものならば、必要サンプル数以上のサンプルを集めて調べなければなりませんし、これだけの数を集める必要がない、もしくは集めることが困難な場合は差があるとはいえないという判断をすることになるかと思います。

 一方、支持率調査や視聴率調査などの場合、比べるべき基準の対象がありません。その場合は、サンプル数が少ないレベルで予備調査を行い、さらにもう少しサンプル数を増やして予備調査を行いを何回か繰り返し、それぞれの調査でサンプルの分布形やその他検討するべき指数を計算し、これ以上集計をとってもデータのばらつきや変化が許容範囲(小数点何桁レベルの誤差)に納まるようなサンプル数を算出していると考えます。テレビ視聴率調査は関東では300件のサンプル数程度と聞いていますが、調査会社ではサンプルのとり方がなるべく関東在住の家庭構成と年齢層、性別などの割合が同じになるように、また、サンプルをとる地域の人口分布が同じ割合になるようにサンプル抽出条件を整えた上で、ランダムに抽出しているため、数千万人いる関東の本当の視聴率を割合反映して出しているそうです。これはすでに必要サンプル数の割り出し方がノウハウとして知られていますが、未知の調査項目では必要サンプル数を導き出すためには試行錯誤で適切と判断できる数をひたすら調査するしかないかと思います。

> どのような評価基準をもって客観的に信頼できると判断・・・
 例えば、工場で作られるネジの直径などは、まったくばらつきなくぴったり想定した直径のネジを作ることはきわめて困難です。多少の大きさのばらつきが生じてしまいます。1mm違っても規格外品となります。工場では企画外品をなるべく出さないように、統計を取って、ネジの直径のばらつき具合を調べ、製造工程をチェックして、不良品の出る確率を下げようとします。しかし、製品をすべて調べるわけにはいきません。そこで、調べるのに最低限必要なサンプル数を調査と計算を重ねてチェックしていきます。
 一方、農場で生産されたネギの直径は、1mmくらいの差ならほぼ同じロットとして扱われます。また、農産物は年や品種の違いにより生育に差が出やすく、そもそも規格はネジに比べて相当ばらつき具合の許容範囲が広くなっています。ネジに対してネギのような検査を行っていたのでは信頼性が損なわれます。
 そもそも、統計学的検定は客観的判断基準の一指針ではあっても絶対的な評価になりません。あくまでも最終的に判断するのは人間であって、それも、サンプルの質や検証する精度によって、必要サンプルは変わるのです。

 あと、お礼の欄にあった専門家:統計学者とありましたが、統計学者が指摘できるのはあくまでもそのサンプルに対して適切な検定を使って正しい計算を行ったかだけで、たとえ適切な検定手法で導き出された結果であっても、それが妥当か否か判断することは難しいと思います。そのサンプルが、何を示し、何を解き明かし、何に利用されるかで信頼度は変化するからです。
 ただ、経験則上指標的なものはあります。正規分布を示すサンプルなら、20~30のサンプル数があれば検定上差し支えない(それ以下でも問題ない場合もある)とか、正規分布でないサンプルは最低6~8のサンプル数が必要とか、厳密さを要求される調査であれば50くらいのサンプル数が必要であろうとかです。でも、あくまでも指標です。

> この統計を調べたいときはこれぐらいのサンプル数があれば信頼できる・・・
 調べたいどの集団でも、ある一定数以上なら信頼できるというような決まりはありません。
 何かサンプルを集め、それをなんかの傾向があるかどうかという仮説を検証するために統計学的検定を行って、仮設が否定されるかされないかを調べる中で、どの検定方法を使うかで、最低限必要なサンプル数というのはあります。また、集めたサンプルを何か基準とすべき別のサンプルと比べる検定して、基準のサンプルと統計上差を出すに必要な...続きを読む

Qカイ2乗検定って何??;;

タイトルのとおりですが…大学で統計の基礎な授業を一般教養で受けています。だけど知らない&説明のない言葉がいっぱぃで、全くついていけません(>_<))
「人が一番選ばなさそうな数字」を何度か投票した結果があって、その数字は無作為に選ばれてるかどうか、有意水準1%としてカイ2乗検定をして判断する、という問題があるのですが、カイ2乗検定自体、授業でちらっと言葉は使ったものの、計算の仕方、使い方の説明等はなく、まったく手がつかずにいます;;ネットでも調べてみましたが、どう使っていいのかまでは分かりませんでした。
知識の無い私でもわかるようなものがあれば教えて下さいっっ!お願いします。

Aベストアンサー

こんにちは.χ2(カイ二乗)検定を厳密に理解するには,数学的素養を持っている状態できっちりと統計学を学習する必要があるのですが,統計データを解析するための手段として統計学を「使う」のであれば,多少の原理を知っておけばよいでしょう.
以下初学者向けにかなり乱暴な説明をしています.正確な理解をしたければ,後で統計学の教科書などで独学して下さい.

χ2検定とは,χ2分布という確率分布を使ったデータ解析法と考えてもらう……のが一番なのですが,多分χ2分布って何? と思われるでしょう.χ2分布とは,二乗値に関する確率分布と考えることができるのですが,この辺もさらりと流して下さい.

例を使って説明します.今,道行く人にA,B,C,Dの四枚のカードの中から好きなもの一枚を選んでもらうとしましょう(ただし,選んでもらうだけで,あげるわけではありません.単にどのカードを選択仕方の情報を得るだけです).一人一枚だけの条件で,160人にカードを選んでもらいました.
さて,ここで考えてみて下さい.4枚のカードには大きな違いはなく,どれを選んでもかまわない.でたらめに選ぶとなれば,どのカードも1/4で,同じ確率で,選ばれるはずですよね? ならば,160人データならば,Aは何枚ほど選ばれる「はず」でしょうか? 同様に,B,C,Dは何枚選ばれる「はず」でしょうか?
……当然,A=B=C=D=40枚の「はず」ですよね? この40枚という数値はでたらめに(無作為に)選ばれたとしたらどんな数値になるかの【理論値】を意味します.

さて,上記はあくまでも理論値であり,実際のデータは異なる可能性があります.というよりはむしろ違っているのがふつうでしょう.そのような実際に観測された数値を【観測値】と呼びます.
仮に理論値と観測値が以下のようになったとします.

        A    B    C    D
(1)観測値   72   23   16   49
(2)理論値   40   40   40   40

当然のように観測値と理論値にズレが生じています.しかし現実と理論が異なるのはある意味当然なのですからぴったり一致することなどありえません.そこで,「ある程度一致しているか(ズレは許容範囲か)」を問題にすることになります.しかし,「ある程度」といわれても一体どのぐらいであれば「ある程度」と言えるのでしょうか? なかなか判断が難しいではないですか?
確かに判断が難しいです.そこで,この判断のために統計学の力を借りて判断するわけで,更に言えばこのような目的(理論値と観測値のズレが許容範囲かどうか)を検討するときに使われるデータ解析法がχ2検定なのです.

        A    B    C    D
(1)観測値   72   23   16   49
(2)理論値   40   40   40   40
(3)ズレ    +32   -17   -14   + 9
(4)ズレ二乗 1024   289   196   81
(5)(4)÷(2) 25.6  7.225  4.9  2.025

 χ2=25.6+7.225+4.9+2.025=49.25

計算過程をさらりと書いていますが,早い話が観測値と理論値のズレの大きさはいくらになるのか,を求めることになります.最終的には「49.25」というズレ値が算出されました.

さて,この「49.25」というズレ値が許容範囲かどうかの判定をするのですが,ここで,χ2分布という確率分布を使うことになります.詳細は統計学教科書を参考してもらうとして,χ2分布を使うと,○○というズレ値が(ある条件では)どのぐらい珍しいことなのか,という「珍しさの確率」を教えてくれます.
かりに「有意水準1%=1%よりも小さい確率で発生することはすごく珍しいと考える(許容範囲と考えられない)」とすれば,「珍しさ確率」が1%以内であれば「許容範囲ではない」と判断します.

以上,長々と書きました.今までの説明を読めばわかるように,χ2検定とはある理論値を想定した時,実際の観測値がその理論値とほぼ一致しているかどうかを調べるための統計解析法のことです.

χ2検定では,理論値をどのように設定するかは分析者の自由です.その設定の仕方で,χ2検定は「適合度の検定」や「独立性の検定」など異なる名称が付与されますが,本質は同じなのです.

質問者さんの場合は

> 「人が一番選ばなさそうな数字」を何度か投票した結果があって、その数字は無作為に選ばれてるかどうか、

これを理論値としてうまく設定することが鍵となるでしょう.

こんにちは.χ2(カイ二乗)検定を厳密に理解するには,数学的素養を持っている状態できっちりと統計学を学習する必要があるのですが,統計データを解析するための手段として統計学を「使う」のであれば,多少の原理を知っておけばよいでしょう.
以下初学者向けにかなり乱暴な説明をしています.正確な理解をしたければ,後で統計学の教科書などで独学して下さい.

χ2検定とは,χ2分布という確率分布を使ったデータ解析法と考えてもらう……のが一番なのですが,多分χ2分布って何? と思われるでしょう.χ2分布...続きを読む

Qエクセルで計算すると2.43E-19などと表示される。Eとは何ですか?

よろしくお願いします。
エクセルの回帰分析をすると有意水準で2.43E-19などと表示されますが
Eとは何でしょうか?

また、回帰分析の数字の意味が良く分からないのですが、
皆さんは独学されましたか?それとも講座などをうけたのでしょうか?

回帰分析でR2(決定係数)しかみていないのですが
どうすれば回帰分析が分かるようになるのでしょうか?
本を読んだのですがいまいち難しくて分かりません。
教えてください。
よろしくお願いします。

Aベストアンサー

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるための指数表記のことですよ。
・よって、『2.43E-19』とは?
 2.43×1/(10の19乗)で、
 2.43×1/10000000000000000000となり、
 2.43×0.0000000000000000001だから、
 0.000000000000000000243という数値を意味します。

補足:
・E+数値は 10、100、1000 という大きい数を表します。
・E-数値は 0.1、0.01、0.001 という小さい数を表します。
・数学では『2.43×10』の次に、小さい数字で上に『19』と表示します。→http://ja.wikipedia.org/wiki/%E6%8C%87%E6%95%B0%E8%A1%A8%E8%A8%98
・最後に『回帰分析』とは何?下の『参考URL』をどうぞ。→『数学』カテゴリで質問してみては?

参考URL:http://ja.wikipedia.org/wiki/%E5%9B%9E%E5%B8%B0%E5%88%86%E6%9E%90

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるた...続きを読む

Q対数変換する意味?

私は数学が苦手な文系大学生です。最近「地域分析」という本を読んでいるのですが、たびたび数式を「対数変換すると・・・」と言う風に話が進みます。対数変換をすることの意味がわからないので内容が理解できません。

まず、対数変換とは何なのか?対数変換を行なうと何がどのように変わるのでしょうか?
また、一般的に対数変換とはどのような目的で行なわれるのでしょうか?

ということを文系の学生にわかりやすく教えていただけないでしょうか。
対数変換の内容を理解していないため、質問が的を得ていないかもしれませんが、よろしくお願いします。(また、ここで説明できるような内容でなければ、その旨をお伝えください。)

Aベストアンサー

まず、ここで論じられている「対数」が「常用対数」を意味する
ことを前提として話を進めましょう。

対数に変換するということは、ある数値を
任意の底の値の指数値で表すことを意味します。
具体的に言うと(ここでは常用対数に限定することにしたので)、
ある数値が10(これが常用対数の底の値)の何乗であるのか
ということです。

たとえば、100という数値の常用対数を取ると、
100は10の2乗ですから、「2」となります。
同様に1000は「3」、10000は「4」です。

このように表現すると、正の数値で1以下の小数から
万や億などの非常に大きい値に散らばる数値サンプルを
整理したり表現するのに非常に便利です。

また、対数にしてグラフを作ると、上記のように非常に
大きな数(または0.00000・・・・のように非常に小さい数)
を限られた紙面上でプロットする事ができます。
もしそのプロットした結果が直線になった場合、
その直線の傾きでサンプルの近似式を導き出すこともできます。

具体的例を挙げると、身近なものではpH値。
これはある液体の単位量あたりどのくらい水素イオンが
含まれるかを対数表現したものです。
(厳密には、モル濃度で表した水素イオン濃度の逆数の常用対数)

まとめると、対数は小数から数万・億などの広範囲に散らばる
数値を整理するために使われる道具とお考えになられたら
良いと思います。

まず、ここで論じられている「対数」が「常用対数」を意味する
ことを前提として話を進めましょう。

対数に変換するということは、ある数値を
任意の底の値の指数値で表すことを意味します。
具体的に言うと(ここでは常用対数に限定することにしたので)、
ある数値が10(これが常用対数の底の値)の何乗であるのか
ということです。

たとえば、100という数値の常用対数を取ると、
100は10の2乗ですから、「2」となります。
同様に1000は「3」、10000は「4」です。

この...続きを読む

Q多変量解析の主成分分析と因子分析の違いについて教えてください.

多変量解析の主成分分析と因子分析の違いについて教えてください.どちらもほとんど同じ気がするのですがどのようにちがうのでしょうか?よろしくお願いいたします.

Aベストアンサー

 ご質問にある通り、因子分析は「多変量解析」の一分野です。因子分析の手法の一種に主成分分析(principal component analysis)があり、主因子法(principal factor method)とも呼びます。

 因子分析に共通しているのは、一つのサンプルから多数の変量を測定する、そういうデータをいっぱい集めて、相関係数という考え方を基本にして解析を行う。その際に、ある変量の変動が「他の変量の線形結合(一次式で表される関係)として表せるような系統的変動と、ランダムな変動とから成っている」という仮定を置く。そして共分散行列(もしくは相関行列)を作ってこれを線形変換する。
データの性格や分析の目的によって、手法を使い分けます。
主成分分析では、どの変量とも高い相関を持つ因子(変量の一次式で表される指標)を抽出するという考え方。
同じ因子分析でも、例えばバリマックス法(varimax method)は、変量のうちの幾つかと高い相関を持つ因子を探す。つまり変量を直接、幾つかのグループに分けるという考え方。従って、出てくる因子は主成分分析とは異なります。

 実際の所は、仰る通り、主成分分析だけでもほぼ事足りるでしょう。なぜなら実際のデータを使うと、意味のある直交成分(因子)が経験上高々4個程度得られ、従って3ないし4次元空間に変量を散布して表すことができる。ゆえにこれを図に描いて、変量の関係を見て取ったり、因子に名前を付ける(解釈を宛てる)ことは比較的容易だからです。
 何でせいぜい4個なのか。もともと「線形関係」という、大変荒っぽい仮定に基づいている。またデータの取り方も、直接物理的な量を測るというよりも、勝手に決めた基準で測った得点などを使う事が多い。例えば「テストの成績が何かの能力に正比例する」と仮定するのは乱暴な話。だからあまり精密な分析にはならないんでしょう。いっぱいあるデータにどういう関係が潜んでいるか見当を付ける道具、と捉えるのが宜しいかと思われます。(どんな基準を作ってどう分析するか、は「多次元尺度構成法」とか「数量化理論」などと呼ばれる分野ですね。)多変量の関係を理論的モデルで記述出来ていて、その予想に基づいてきちんと測れる量を相手にし、あるいは莫大なサンプル数で測定を行う場合には、理論に含まれるパラメータの最尤値を決めたり、理論的予想と実測との間の統計的検定を行うという事が問題であって、因子分析には出番がありません。
 だから極端な言い方をすれば、因子分析は「わけの分からん、或いは品質の悪いデータを相手にする道具。」

 因子分析ほどあらっぽくはなく、しかしモデルはいい加減、という中間的な手法もあります。たとえば線形因果ネットワーク(causal network)では、直感なり観察なり部分的なデータ分析なりに基づいて、複数の変量の間に線形関係を仮定してモデル化します。すると、「直接に線形関係で結ばれない変量同士の関係」は一般に整数次の多項式で表されるようになります。この文脈から言えば、階層型ニューラルネットワーク(neural network)も、主観的にモデルを与えずに、データから自発的にモデルを構成させようというもので、変量の線形結合にいい加減な非線形変換を施した物を出力とする、一つの多変量解析法とも見なせます。

話がだいぶ脱線したようです。

 ご質問にある通り、因子分析は「多変量解析」の一分野です。因子分析の手法の一種に主成分分析(principal component analysis)があり、主因子法(principal factor method)とも呼びます。

 因子分析に共通しているのは、一つのサンプルから多数の変量を測定する、そういうデータをいっぱい集めて、相関係数という考え方を基本にして解析を行う。その際に、ある変量の変動が「他の変量の線形結合(一次式で表される関係)として表せるような系統的変動と、ランダムな変動とから成っている」という仮定を置く...続きを読む

Q質的データと量的データの相関について

例えば性別のような質的なデータとテストの点数などの連続変数からなる量的データの間の相関をみるということは出来るのでしょうか??統計の本には相関の結果が書いてあるのですが、結果の読み取り方と計算の仕方がわかりません。基本的な質問ですみませんが、どなたか教えていただけませんか??
宜しくお願いいたします。

Aベストアンサー

で・き・ま・す!!!
こんなこと、なかなか学校ではカリキュラムの中でなんか教えてくれないですよね。私も決して専門家ではないんですが、我流で考えました。(まー結果的には我流でなくて正統流だと自負しているんですが)

さて、本題。
ご質問の文中「質的なデータ」とおっしゃってますが、要は、これも不連続ではあるんですが、数に見立ててしまえばいいんですよ。

<例1>
2者(男と女)での性質の違いを調べたいとき
→数はなんでもよいんですが、例えば、男を1、女を2とすればよいです。

<例2>
3者のものを比べたいとき(男、女、オ○マの3種類とか)
→次の3通りについて、全部相関を調べればよいです。
・A群を1、B・C群を2
   →これで相関が出ればAに属するか否かによって性質が違うということが言えます。
・B群を1、A・C群を2 → 以下同文
・C群を1、A・B群を2 →  〃

Excelとかだと、「相関係数」が容易に関数として求めることができるので、ちょー簡単に分析できますよ。
相関係数というものは-1から+1までの値をとります。絶対値が1に近いほど相関あり、0に近いほど相関なしです。相関係数の絶対値だけが問題なので、男を1、女を2としても、その逆にしてもよいわけです。

私、日ごろ、当たり前のように、応用してますよ。

<実用例>
パンを焼く機械が3台ある工場で、製造不良数と使用機械との間に相関がないかどうか調べる。
この結果、特定の機械でつくったパンだけに不良が多い傾向が認められれば、その機械に対して対策を打つ・あるいは使用禁止にして、残り2台のみ稼動とする など。

以下、補足です。
このような3者以上の時って、結果的に相関係数が最大になるように、それぞれに対する「数値」を微妙に調整していくと理想的ですね。(←試行錯誤的な繰り返しになると思いますが)
例えば、3つの中でナンバー1がどれでワースト1がどれと決まり、さらには、両者の中間のは、どちらかというと他の2つのどちらに近いか、といったことまで判ります。だけど、ここまで分析するのは複雑だし時間がかかるので、私は実用的にはやっていません。前記のように3種類を2種類ずつ3通りに分けるだけで十分と思います。

で・き・ま・す!!!
こんなこと、なかなか学校ではカリキュラムの中でなんか教えてくれないですよね。私も決して専門家ではないんですが、我流で考えました。(まー結果的には我流でなくて正統流だと自負しているんですが)

さて、本題。
ご質問の文中「質的なデータ」とおっしゃってますが、要は、これも不連続ではあるんですが、数に見立ててしまえばいいんですよ。

<例1>
2者(男と女)での性質の違いを調べたいとき
→数はなんでもよいんですが、例えば、男を1、女を2とすればよいです。

...続きを読む


人気Q&Aランキング