最小二乗法のレポートをしていて偏微分の計算でうまくいきません
     m
J(x)=Σ (Zi-hix)^2
     i=1
Zmiが測定点、xiが変量点、真値yi=hixです

 ただし hm=[am1 am2 ・・・amn]
x=[x1 x2 ・・・xn]t

∂J/∂x1=0、・・・・、∂J/∂xn=0
よりx1、・・・・xnを求めるのですがm,nの値がわかっていれば分解してとくことはできると思うのですがm,nをつかってどう表せばいいかわかりません。

数日前に最小二乗法のレポートというタイトルで「その他の理系の学問」というところに書き込ませてもらいましたが問題だけ書いたということもあり返事がきませんでした・・・。あらためてここで質問させてください。

  

このQ&Aに関連する最新のQ&A

A 回答 (1件)

 あのですね、記号が余りにも分かりにくくてですね、回答する気に誰もならないのだと思います。

(これが回答が来ない理由その1。)
x=[x1 x2 ・・・xn]t
このtってのはまさか転置の意味でしょうか?(普通はそうは読みませんけど。)
添え字と掛け算がごっちゃになっているのもわかりにくさの原因のようです。添え字を[]に入れて表すと、
h[i]x = Σ{n=1,2,...,N}(a[i,n] x[n])  (ここに{}内はΣの和の範囲を示しています)
であって、
J(x) = Σ{i=1,2,...,m}(Z[i] - Σ{n=1,2,...,n}(a[i,n] x[n]))^2
ということかな?
さらにxの各要素は独立のパラメータとみなしてよいのでしょうか。

だとしますと、これは典型的な線形最小二乗法であり、ヤコビアン行列aが具体的に与えられている。これ以上簡単な問題はないというぐらいめちゃめちゃ基本的な話です。こんなことは、絶対教科書に書いてある筈なんです。(これが回答が来ない理由その2。)

ε[i] =Σ{n=1,2,...,N}((a[i,n] x[n])-Z[i])
とおくと、
J(x) = Σ{i=1,2,...,m}(ε[i] )^2
従って、
∂J/∂x[k] = Σ{i=1,2,...,m}(2ε[i] (∂ε[i] /∂x[k]))
ですね。そして
∂ε[i] /∂x[k] = a[i,k]
です。以上から、
∂J/∂x[k] = 0 (k=1,2,...)
が行列でどう表されるかはもうお分かりかと思います。

 レポートだったらご自分でおやりなさいな。勉強が目的の筈でしょう?余りにも頼りすぎで、考えた形跡が認められない。(これが回答が来ない理由その3。)
    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aと関連する良く見られている質問

Q∂f/∂x=∂f/∂yの表される解を考えてみました

∂f/∂x=∂f/∂y ・・・・・・・(1) の解について

(1)を満たす解f(x,y)はz=x+yとしてf(x,y)=C(z) (C(z)はzについて微分可能な任意関数)である。
しかしこの解がそれ以外で表されるか否かというのを考えてみました。

(考察)
f(x,y)が(1)の解であるならば、zを任意の定数として固定してy=-x+zのとき
合成関数の微分法を用いて
df(x,-x+z)/dx=0 である。
これをf(x,-x+z)について解くと、f(x,-x+z)=C(z) (C(z)はzのみに依存する任意関数)

すなわち df(x,-x+z)/dx=0 ⇔ f(x,-x+z)=C(z) 
                  ⇔ f(x,y)=C(x+y)  ・・・・・・・・・・・(2)
しかし(1)に代入するとC(x+y)はx+yについて微分可能でないといけないことが分かるので
結局(2)は
 df(x,-x+z)/dx=0 ⇔ f(x,y)=C(x+y) (C(x+y)はx+yについて微分可能な任意関数) ・・・・・・(2)'

となる。
逆に(1)を満たす解の中でf(x,y)=C(x+y)の形以外の適当なx,yに依存する関数F(x,y)を考える。
y=-x+z(zは任意定数)と制限されれば x+yのみに依存する任意関数C(x+y)をとっても
F(x,y)≠C(x+y)であるから (2)'からdF(x,-x+z)/dx≠0    
つまりy=-x+zのとき
dF(x,-x+z)/dx=∂F/∂x+dy/dx・∂F/∂y=∂F/∂x -∂F/∂y≠0 で
このときF(x,y)は(1)を満たさない。

したがって(1)を満たす解はz=x+yとして
f(x,y)=C(z) (C(z)はzについて任意の微分可能な関数)でしか表せない事が分かった。

この説明方法に誤り、アドバイスあれば指摘してください。
問題は(1)の解でy=-x+zと制限すれば必ずdf(x,-x+z)/dx=0なるという情報が分かっている。
F(x,y)をy=-x+zで制限されたときF(x,-x+z)/dx ≠0だから(1)はこのとき満たされないため
f(x,y)=C(x+y)のみしか表せないと考えたのであるが、それでよいかどうか。


fが(1)の解 ⇒ y=-x+zのとき df(x,-x+z)/dx=0
これより  y=-x+zのときdF(x,-x+z)/dx≠0 ⇒ Fは(1)の解でない 
だから
(1)の解はf(x,y)=C(x+y)のみというのが自分の考え。

∂f/∂x=∂f/∂y ・・・・・・・(1) の解について

(1)を満たす解f(x,y)はz=x+yとしてf(x,y)=C(z) (C(z)はzについて微分可能な任意関数)である。
しかしこの解がそれ以外で表されるか否かというのを考えてみました。

(考察)
f(x,y)が(1)の解であるならば、zを任意の定数として固定してy=-x+zのとき
合成関数の微分法を用いて
df(x,-x+z)/dx=0 である。
これをf(x,-x+z)について解くと、f(x,-x+z)=C(z) (C(z)はzのみに依存する任意関数)

すなわち df(x,-x+z)/dx=0 ⇔ f(x,-x+z)=C(z) 
     ...続きを読む

Aベストアンサー

よいと思います。
(x,y) から (x,z), z=x+y へ
変数変換して考えたのですね。

(x,y) から (z,w), z=x+y, w=x-y へ
変換して考えてみても、x を共用しないので
解りやすいかもしれません。

Q∂x/∂z=(1/y)*(∂y/∂z)について

∂x/∂z = (1/y)*(∂y/∂z)を解くと、
x = lny + C(定数)になるのですが、

両辺に∂zをかけて、分母の∂zを消去した上でそれぞれ積分しているのでしょうか。

それとも別の操作で∂zを消しているのでしょうか。

Aベストアンサー

かけ算しているとして考えてもいいですし、

左辺=∂x/∂z=∂x/∂y・∂y/∂zとすると、

結局、∂x/∂y=1/yとなることがわかります。

Q{x1,x2,…,xn}は正規直交系でxがspan{x1,x2,…,xn}に無いならxは直交する?

[Q] Given a orthonormal set,O:{x1,x2,…,xn},and x is not in spanO,show that x is orthonormal to every vector in O.

という定理についてです。
仮定は<xi,xj>=δij (i,j∈{1,2,…,n})
xがspanOの中に無いというのだからx,x1,x2,…,xnは一次独立ですよね。
一次独立だからといってxがOのどの元とも直交するとは言えませんよね。
背理法で∃i∈{1,2,…,n};<x,xi>≠0だと仮定してみると
∥x∥∥xi∥cos∠(x,xi)≠0と書け、、、
からどうやってxがOのどの元とも直交である事を示せばいいのでしょうか?

Aベストアンサー

[Q]で書いてある主張は正しくないです.
反例:n=1, x_1=(1 0)の転置, x=(1 1)の転置.

Qx[1]・x[2]・…・x[n]=1 ならば x[1] + x[2] + … + x[n] ≧ n

x[k]>0 (k=1,2,…,n)とする。

このとき、
x[1]・x[2]・…・x[n]=1 ならば x[1] + x[2] + … + x[n] ≧ n

と予想しましたが、証明できるのでしょうか?

また、
x[1] + x[2] + … + x[n] = 1 とすると、x[1]・x[2]・…・x[n] に関する何らかの不等式はあるのでしょうか?

Aベストアンサー

そのまま相加相乗平均ですね。

( x[1] + x[2] + … + x[n])/n≧(x[1]・x[2]・…・x[n])^(1/n)=1
x[1] + x[2] + … + x[n]≧n

反対も同じです。

1/n≧(x[1]・x[2]・…・x[n])^(1/n)
x[1]・x[2]・…・x[n]≦(1/n)^n

Q偏微分方程式 (∂^2 u)/(∂x∂y)=0続き

※つい先ほど、質問させていただいた
偏微分方程式 (∂^2 u)/(∂x∂y)=0
http://okwave.jp/qa/q8116262.html
の続き(後半)です。
また、先週、質問させていただいた
「偏微分方程式 (∂^2 u)/(∂x^2)=0」
http://oshiete.goo.ne.jp/qa/8102140.html
にも関連しています(ややこしくて、すみません)。

u を x と y の関数として、次の偏微分方程式の解 u(x,y) の形を求めよ。

(∂^2 u)/(∂x∂y)=0

模範解答
(∂/∂x)(∂u/∂y)=0 であるから、

     ∂u/∂y = φ(y)
     (φ(y)はyの任意の関数)

である。したがって、

     u = ∫φ(y)dy + θ(x)     ←これに至るまでの過程が分かりません
      = φ_1(y) + θ(x)
     (θ(x), φ_1(y)はそれぞれxおよびyの任意の関数)

となる。

・・・と本に書いてあります。
u = ∫φ(y)dy + θ(x) に至るまでの過程が分かりません。

上記の「∂u/∂y = φ(y)
     (φ(y)はyの任意の関数)
である。」以降を自分なりに解いてみますと:

次に
     (∂/∂y){y・φ(y)} = φ(y)
となることを活かして
     ∂u/∂y = (∂/∂y){y・φ(y)}
と変形する。これを移項して
     ∂u/∂y - (∂/∂y){y・φ(y)} = 0
     (∂/∂y){u - y・φ(y)} = 0
w = u - y・φ(y)とおけば
     ∂w/∂y = 0
となるので、例題の(1)式(http://oshiete.goo.ne.jp/qa/8102140.html参照のこと)と同様にして
     w = θ(x)
     (θ(x)はxの任意の関数)
u - y・φ(y) = wと戻すと
     u - y・φ(y) = θ(x)
     u = y・φ(y) + θ(x)
(θ(x), φ(y)はそれぞれxおよびyの任意の関数)

・・・となりました。
どのタイミングでu = ∫φ(y)dy + θ(x)にしないといけないのか、
そして、たとえ∂u/∂y = φ(y)の両辺をyで積分したとしても、
なぜいきなりθ(x)が出てきたのか分かりません。

ちなみに本の模範解答のφ_1(y)って、
φ(y)をyで掛けようが割ろうがyの任意の関数であることには変わりはないので、
もしかして私が出した答えのy・φ(y)と同じ意味でしょうか?

いろいろ質問してすみません。どうか教えて下さい。お願いします。

※つい先ほど、質問させていただいた
偏微分方程式 (∂^2 u)/(∂x∂y)=0
http://okwave.jp/qa/q8116262.html
の続き(後半)です。
また、先週、質問させていただいた
「偏微分方程式 (∂^2 u)/(∂x^2)=0」
http://oshiete.goo.ne.jp/qa/8102140.html
にも関連しています(ややこしくて、すみません)。

u を x と y の関数として、次の偏微分方程式の解 u(x,y) の形を求めよ。

(∂^2 u)/(∂x∂y)=0

模範解答
(∂/∂x)(∂u/∂y)=0 であるから、

     ∂u/∂y = φ(y)
     (φ(y)はyの任意の関数)

である。したがっ...続きを読む

Aベストアンサー

>「∂u/∂y = φ(y) (φ(y)はyの任意の関数)である。」

>u = ∫φ(y)dy + θ(x)     
>←これに至るまでの過程が分かりません

過程などありません。
yについての不定積分だから
原始関数:∫φ(y)dy
に積分定数を加えただけです。yについての不定積分なので
xについての任意関数θ(x)が積分定数となります。
ただそれだけのことです。

>      = φ_1(y) + θ(x)
(θ(x), φ_1(y)はそれぞれxおよびyの任意の関数)>
上述の原始関数:∫φ(y)dyは積分形なので改めて
原始関数φ_1(y)で置き換えただけです。

>次に
>     (∂/∂y){y・φ(y)} = φ(y)
>となることを活かして
とはなりません。
(∂/∂y){y・φ(y)} = φ(y)+yφ'(y)
ですよ。
なので、あなたの折角の苦労も無駄でしたね。


人気Q&Aランキング

おすすめ情報