【復活求む!】惜しくも解散してしまったバンド|J-ROCK編 >>

今微分方程式を勉強しています。使っている教科書は、問題の解答が載っていません。問題がたくさんのっていて、(ひとつの分野につき20問程度)解答が詳しいものを教えてください。

A 回答 (2件)

微分方程式のテキストは本屋に行けば結構たくさんでていますが,なかでも小寺平治著「なっとくする微分方程式」(講談社)は比較的分かりやすく,演習問題も豊富で解説も詳しくお薦めの一冊です。



参考URL:http://www.amazon.co.jp/exec/obidos/ASIN/4061545 …
    • good
    • 2

モノグラフの微分方程式


この本の係数変化法程度まで解ければ
殆んどの問題は解けます。大学の
物理数学程度まで応用が利きます。

このシリーズは高校程度の数学から
さらにちょっと上までカバーしています。

ちょっと大きな書店(そこらへんの本屋だと
漫画は多いけどこういうのはなかなかおかない)
か、大学内の生協が運営する書店(受験生でも
利用可能です。)とかいくと、文庫本程度の
数学書があるので、そういうなかで興味がある
ものを買うとさらに良いかも。微分方程式から
発展して偏微分方程式、複素関数論、
行列とテンソル…等など。外積を知っておくと
受験に有利かも。
http://www.dt.takuma-ct.ac.jp/~sawada/math/danwa …
http://www12.plala.or.jp/ksp/formula/mathFormula …
http://www004.upp.so-net.ne.jp/s_honma/urawaza/v …
http://f1.aaa.livedoor.jp/~zahyou/3db/gai.htm



数学史や公式集などもお勧め。

参考URL:http://www.foruma.co.jp/books/print/pri_7527/
    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qオススメの線形代数の問題演習を教えてください!

よくわかる線形代数と、
やさしく学べる線形代数を独習しました。

次に、問題集に取り組みたいのですが、
オススメの線形代数の問題集を教えてください。

いまのところ、
基本演習 線形代数 (基本演習ライブラリ) - 寺田 文行, 木村 宣昭
にしようかと思っています。
よろしくお願いいたします。

Aベストアンサー

理学部でしたか。それならば、演習書ではないですが、こちらを
お勧めします。(ご存知かもしれませんが、、)
斉藤正彦さんの名著です。
http://www.amazon.co.jp/%E7%B7%9A%E5%9E%8B%E4%BB%A3%E6%95%B0%E5%85%A5%E9%96%80-%E5%9F%BA%E7%A4%8E%E6%95%B0%E5%AD%A6-1-%E9%BD%8B%E8%97%A4-%E6%AD%A3%E5%BD%A6/dp/4130620010/ref=sr_1_1?ie=UTF8&s=books&qid=1239847081&sr=8-1
沢山実践的な演習をこなしたいなら、こちらがお勧めです。
こちらは、図書館から借りて使用しました。解説が詳しく、かつ
良問が揃っているので、理解力、応用力がつくと思います。
サイエンス社
http://www.amazon.co.jp/%E6%BC%94%E7%BF%92%E5%A4%A7%E5%AD%A6%E9%99%A2%E5%85%A5%E8%A9%A6%E5%95%8F%E9%A1%8C%E3%80%88%E6%95%B0%E5%AD%A6%E3%80%89I-%E5%A7%AB%E9%87%8E-%E4%BF%8A%E4%B8%80/dp/4781908373/ref=sr_1_1?ie=UTF8&s=books&qid=1239847242&sr=1-1
東京図書
http://www.amazon.co.jp/%E8%A9%B3%E8%A7%A3-%E5%A4%A7%E5%AD%A6%E9%99%A2%E3%81%B8%E3%81%AE%E6%95%B0%E5%AD%A6%E2%80%95%E7%90%86%E5%AD%A6%E5%B7%A5%E5%AD%A6%E7%B3%BB%E5%85%A5%E8%A9%A6%E5%95%8F%E9%A1%8C%E9%9B%86-%E6%9D%B1%E4%BA%AC%E5%9B%B3%E6%9B%B8%E7%B7%A8%E9%9B%86%E9%83%A8/dp/4489003897/ref=sr_1_2?ie=UTF8&s=books&qid=1239847309&sr=1-2
参考までに、

理学部でしたか。それならば、演習書ではないですが、こちらを
お勧めします。(ご存知かもしれませんが、、)
斉藤正彦さんの名著です。
http://www.amazon.co.jp/%E7%B7%9A%E5%9E%8B%E4%BB%A3%E6%95%B0%E5%85%A5%E9%96%80-%E5%9F%BA%E7%A4%8E%E6%95%B0%E5%AD%A6-1-%E9%BD%8B%E8%97%A4-%E6%AD%A3%E5%BD%A6/dp/4130620010/ref=sr_1_1?ie=UTF8&s=books&qid=1239847081&sr=8-1
沢山実践的な演習をこなしたいなら、こちらがお勧めです。
こちらは、図書館から借りて使用しました。解説が詳しく、かつ
良問が揃...続きを読む

Q大学1年生向き 力学参考書は?

某旧帝大、工学部1回生のものです。

力学(古典力学)のお勧めの参考書を教えて下さい。

授業指定の教科書が『ファインマン物理学(1)力学』なのですが、理解の範疇を超えています。
そこで他に代わる参考書を探しているのですが、調べた中では、
・物理学序論としての力学(東京大学出版会)
・物理入門コース(1) 力学(岩波書店)
の評価が高く、購入を迷っているところです。

しかし、前者の方は近くの本屋で販売しているところがなく、読み比べられないので困っています。


そこでお聞きしたいのは、
1.力学(古典力学)のお勧めの参考書とその理由(上記の本以外でもかまいません)
2.上に挙げた2つの本の違い(大雑把で構いません)
の2点です。

どちらかだけでも構いませんので、ご存知でしたらご教授ください。
よろしくお願いいたします。

※因みに力学分野は得意というほどではありませんが、高校範囲において苦労しなかった、というレベルです。

Aベストアンサー

ファインマン物理学が指定教科書なんてうらやましい限り…

私は授業で
・物理入門コース(1) 力学(岩波書店)
を使って、
自分で
・物理学序論としての力学(東京大学出版会)
を読みました。

前者は淡々と物理の概要について述べてる感じです。
No.1さんのおっしゃる通り、無難です。
とりあえずこれをやっておけば初年度の力学なら大丈夫という感じ。
工学部生ならこれで十分だとは思います。(私も工学部ですがw
いかにも教科書って感じのヤツですよ。普通にわかりやすいです。
でも私にはあまり役に立ちませんでした(高校で結構物理は勉強していたので)。

後者はとても面白いスタイルの本でした。
まさに"物理学序論としての"という感じ。
数式の物理的意味とか、物理の概念なんかを知りたいのならこちらがいいと思います。
面白いです。

ただ、問題を"解ける"ようになるのは前者かなぁと思います。
問題集なんかを買ってちゃんといっぱい解いていった方がいいかと思います。

個人的には読み物ならやっぱりファインマン物理学を気合いれて読むといいと思うんですけどね・・・

私のように機械系に関係する感じだったら、剛体運動の場合には、機械力学や工業力学関係の本なんかで勉強するのもいいかなと思います。

ファインマン物理学が指定教科書なんてうらやましい限り…

私は授業で
・物理入門コース(1) 力学(岩波書店)
を使って、
自分で
・物理学序論としての力学(東京大学出版会)
を読みました。

前者は淡々と物理の概要について述べてる感じです。
No.1さんのおっしゃる通り、無難です。
とりあえずこれをやっておけば初年度の力学なら大丈夫という感じ。
工学部生ならこれで十分だとは思います。(私も工学部ですがw
いかにも教科書って感じのヤツですよ。普通にわかりやすいです。
でも私にはあま...続きを読む

Q偏微分の記号∂の読み方について教えてください。

偏微分の記号∂(partial derivative symbol)にはいろいろな読み方があるようです。
(英語)
curly d, rounded d, curved d, partial, der
正統には∂u/∂x で「partial derivative of u with respect to x」なのかもしれません。
(日本語)
ラウンドディー、ラウンドデルタ、ラウンド、デル、パーシャル、ルンド
MS-IMEはデルで変換します。JIS文字コードでの名前は「デル、ラウンドディー」です。

そこで、次のようなことを教えてください。
(1)分野ごと(数学、物理学、経済学、工学など)の読み方の違い
(2)上記のうち、こんな読み方をするとバカにされる、あるいはキザと思われる読み方
(3)初心者に教えるときのお勧めの読み方
(4)他の読み方、あるいはニックネーム

Aベストアンサー

こんちには。電気・電子工学系です。

(1)
工学系の私は,式の中では「デル」,単独では「ラウンドデルタ」と呼んでいます。あとは地道に「偏微分記号」ですか(^^;
その他「ラウンドディー」「パーシャル」までは聞いたことがあります。この辺りは物理・数学系っぽいですね。
申し訳ありませんが,あとは寡聞にして知りません。

(3)
初心者へのお勧めとは,なかなかに難問ですが,ひと通り教えておいて,式の中では「デル」を読むのが無難かと思います。

(4)
私はちょっと知りません。ごめんなさい。ニックネームは,あったら私も教えて欲しいです。

(2)
専門家に向かって「デル」はちょっと危険な香りがします。
キザになってしまうかどうかは,質問者さんのパーソナリティにかかっているでしょう(^^

*すいません。質問の順番入れ替えました。オチなんで。

では(∂∂)/

Qベクトル解析のおすすめ参考書について

大学でベクトル解析の講義があるのですが,おすすめの参考書があれば教えてください.
とりあえず先生からは,小林亮「ベクトル解析入門」を勧められましたが,この他にいい本はありますか?

ベクトル解析は初めて学ぶので,レベルはそこまで高くなく.入門書程度だとわかりやすいです.

よろしくお願いします.

Aベストアンサー

岩波書店の理工系の数学入門コース3「ベクトル解析」戸田盛和著。
裳華房「基礎解析学」矢野健太郎、石原繁著。第2部ベクトル解析。
http://www.f-denshi.com/index.html
http://www.f-denshi.com/000TokiwaJPN/20vectr/000vectr.html
お励みください。

Q演習書(線形代数あるいは微分積分)で回答が丁寧でわかり易いものを教えて下さい。

演習書(線形代数あるいは微分積分)で回答が丁寧でわかり易いものを教えて下さい。宜しくお願いします。

Aベストアンサー

私は数学専攻の四回生のものです。

私が主に用いたのは
共立出版
「明解演習 線形代数」「明解演習 微分積分」
小寺平治 著

です。高校のとき使ったニューアクションや青チャートのような構成になっていてわかりやすかったです。

持っていないのですが、サイエンス社の「演習と応用シリーズ」も丁寧だったと思います。

あと培風館の「詳説演習シリーズ」も少し難しいですが評判はなかなかいいみたいです。

線形代数・微分積分の場合、純粋数学の人間が使う本と工学系や物理学系の人間が使う本とで微妙に書かれている内容が違うことがありますので気をつけて下さい。自分の方面に合った本を選ぶことがベストだと思います。図書館や書店でいろいろさがしてみてください。

2ちゃんねるのまとめページですがここも参考にしてみてください。
http://www.geocities.co.jp/Technopolis-Mars/7997/

大学院の入試参考書サイトもよろしければ
http://www.initialize.co.jp/ae/books.php

それではがんばってください。

参考URL:http://www.geocities.co.jp/Technopolis-Mars/7997/

私は数学専攻の四回生のものです。

私が主に用いたのは
共立出版
「明解演習 線形代数」「明解演習 微分積分」
小寺平治 著

です。高校のとき使ったニューアクションや青チャートのような構成になっていてわかりやすかったです。

持っていないのですが、サイエンス社の「演習と応用シリーズ」も丁寧だったと思います。

あと培風館の「詳説演習シリーズ」も少し難しいですが評判はなかなかいいみたいです。

線形代数・微分積分の場合、純粋数学の人間が使う本と工学系や物理学系の人間が使う本...続きを読む

Qベクトル解析の分かりやすく丁寧な問題集or参考書なにかあいますか?

題名の通りベクトル解析の問題集or参考書を探しています。私は大学1年生で偏差値52,3位の国立大学工学部の学生です。今、授業で↓のテキストを使っています。
ttp://www.amazon.co.jp/exec/obidos/ASIN/4563005894/qid%3D1102851192/249-1804745-1961152
しかしこのテキストなのですが例題も適度に入っていて基礎向けだとは思うのですがその例題の解答ががかなり略されていてほとんど使えません。それでこのテキストと似たレベルで、できるだけ沿った基礎的な内容でふんだんに例題を含め、分かりやすい解答が載ってる参考書または問題集はないでしょうか?

注文が多くて申し訳ないのですが、もしお勧めのものなどありましたら宜しくお願いします。

Aベストアンサー

私が持ってる中で、特にわかりやすかったものは裳華房の「基礎解析学コース ベクトル解析」です。矢野健太郎と石原繋の共著です。
記述の仕方が高校教科書チックでして、
定義の説明⇒定理の説明⇒例題とその答え⇒問題
という感じに進んでいきます。
正直いって定理の証明などに関しては、機械的に証明が載ってるだけで、決して親切ではないんですが、むしろその方がいいように思うのです。
ガウスやストークスなど難しい定理について、「とにかく雰囲気だけでもつかめるように」という感じで無理に(口語調で一見わかりやすそうな)説明を費やした本が非常に多いです。しかもその大半は「わかりやすい説明」に成功しているとはいえません。それに、「雰囲気だけつかむためにあえて非数学的な説明をする」というのは、「一旦その分野を勉強して挫折した人」が読むものであって、最初から読むものではないと思います。
その点、この本は「最初から理解しなくてもいい。とにかく計算練習を積めば、そのうち理解がついてくる」という感じの本ですね。「読書百辺、意おのづから通ず」というのは古来の考え方ですが、案外数学の勉強でも通用する考え方だと思うので初学者には向いてます。
もちろん、この本だけでは心もとないので、もう一冊くらい、併用で使うことをおすすめします。
「キーポイントシリーズ」の3巻がベクトル解析だったと思います。あのシリーズなどは、「雰囲気をつかむ」ための本ですね。本格的ではないですが、併用で用いる分には役立つと思います。

私が持ってる中で、特にわかりやすかったものは裳華房の「基礎解析学コース ベクトル解析」です。矢野健太郎と石原繋の共著です。
記述の仕方が高校教科書チックでして、
定義の説明⇒定理の説明⇒例題とその答え⇒問題
という感じに進んでいきます。
正直いって定理の証明などに関しては、機械的に証明が載ってるだけで、決して親切ではないんですが、むしろその方がいいように思うのです。
ガウスやストークスなど難しい定理について、「とにかく雰囲気だけでもつかめるように」という感じで無理に(口語調で...続きを読む

Q積分で1/x^2 はどうなるのでしょうか?

Sは積分の前につけるものです
S dx =x
S x dx=1/2x^2
S 1/x dx=loglxl
まではわかったのですが
S 1/x^2 dx
は一体どうなるのでしょうか??

Aベストアンサー

まず、全部 積分定数Cが抜けています。また、積分の前につけるものは “インテグラル”と呼び、そう書いて変換すれば出ます ∫

積分の定義というか微分の定義というかに戻って欲しいんですが
∫f(x)dx=F(x)の時、
(d/dx)F(x)=f(x)です。

また、微分で
(d/dx)x^a=a*x^(a-1)になります …高校数学の数3で習うかと
よって、
∫x^(a-1)dx=(1/a)*x^a+C
→∫x^adx={1/(a+1)}*x^(a+1)+C
となります。

つまり、
∫1/x^2 dx=∫x^(-2)dx
={1/(-2+1)}*x^(-2+1)+C
=-x^(-1)+C
=-1/x+C

です。

Qベクトル解析の参考書

今大学でベクトル解析を習ってはいますがさっぱり理解できません。
とにかく分かりやすく、体系的に説明してある参考書を知ってる方は教えて下さい。色が多かったり、図が多い参考書を探してます。

Aベストアンサー

こんにちは、laugher12さん。インターネットの検索で見つけました。お役に立つといいですが。

参考URL:http://www.f-denshi.com/000TokiwaJPN/20vectr/000vectr.html

Q物理を勉強するための複素関数論

現在物理学科の2年生です。
複素関数論の授業が始まるのですが教科書の指定はありません。
物理をするうえで必要な複素関数論の勉強をするうえで適している参考書について知りたいです。
数学科の人だけが使うようなものすごく深い内容のものでなくてもかまいません。
量子力学、流体力学などを学ぶ上で必要なレベルの本が知りたいです。
現在、
神保道夫さんの複素関数入門を持っていますが苦戦してます・・・
この本は数学科の人用に作られていると聞きました。
物理を学ぶ学生はこの位の本をやっておくべきでしょうか?
またこの本以外でおすすめの参考書があれば教えてください。

Aベストアンサー

添付URLを見てください。
物理屋さんが書いた複素関数入門です。

写像などの数学的なことは最小限で物理科の自分にはとてもあっていました。

この本は複素数は2次元ベクトルで、複素関数は2次元のベクトル解析だ
という考え方で進みます。
当然ながら流体力学への応用も入っていてお得です。

参考URL:http://www.amazon.co.jp/複素解析と流体力学-今井-功/dp/4535606013

Q他大学から東大大学院入試の難易度

自分はw稲田大学の文学科に通っているものです。将来哲学の研究をしていきたいと思っています。
自分としては東京大学大学院総合文化研究科に進学したいと考えています。理由は、色々と大学院を検索した結果、指導をしていただきたい現代哲学専攻の教授がそこの研究科にいらっしゃるからです。

自分は院試までにはもうちょっと期間があるのですが、東大院入試は東大受験よりも比較的簡単というのは本当でしょうか。というのは下記のホームページでは他大学受験の倍率は約5倍だからです(大学受験の倍率は約3倍)。数字だけをみると大学受験よりも門は閉ざされているような気がします。
色々と調べてみて(もちろんok web内も)、院の研究室に通って問題傾向を把握することができたら内部生との差も大きく縮まる(もちろんこれは東大院に限らない)ということはわかりました。また東大院は他大学生に対して門戸を開いている大学院である、ということも。
しかしこれだけが難易度が低い理由ではないと(ただの推測ですが)思っています。

私と同じ立場での東大院入学者、またはこれらの数字が示す本当の意味や実際の事情について知っていらっしゃる方がいましたらぜひ教えてください。

参考;http://www.u-tokyo.ac.jp/stu01/e02_01_j.html

自分はw稲田大学の文学科に通っているものです。将来哲学の研究をしていきたいと思っています。
自分としては東京大学大学院総合文化研究科に進学したいと考えています。理由は、色々と大学院を検索した結果、指導をしていただきたい現代哲学専攻の教授がそこの研究科にいらっしゃるからです。

自分は院試までにはもうちょっと期間があるのですが、東大院入試は東大受験よりも比較的簡単というのは本当でしょうか。というのは下記のホームページでは他大学受験の倍率は約5倍だからです(大学受験の倍率は約3倍...続きを読む

Aベストアンサー

東大の院はここ数年でかなりレベルが下がったと聞きます。私もw稲田大ですが、同期の友人が東大の院試を受けて理工研究科に進学しました。彼の話では、大学レベルではやはりかなり差があるものの、院になったら早大との差はほとんどない、むしろ東大の方がレベル低いように感じる、とのこと。

学部や研究科によって違いはあるのでしょうが、以前と比べて東大の院のレベルが落ちてきていることはどうやら間違いなさそうです。

単純な受験倍率だけで見れば上がっているのかもしれませんが、レベルが落ちてきたことで、受験者が増えてきたというだけかもしれませんよ。


人気Q&Aランキング

価格.com 格安SIM 料金比較