{log (n+1) -1} ×2 ×(n+1)/4 + {log (n+1) -2} ×2 ×(n+1)/8 +
{log (n+1) -3} ×2 ×(n+1)/16 + ……
= (n+1) log (n+1) { 1 + 1/2 + 1/2^2 + 1/2^3 + 1/2^4 + …… }
- (n+1) {1 + 1/2 + 2/2^2 + 3/2^3 + 4/2^4 + …… }
上の計算がどうしてこうなるかが分かりません。
これを計算すると
2n*log(n+1)-4(n+1)
になりますか?
ちなみにlogの底は2です。

このQ&Aに関連する最新のQ&A

計算 log」に関するQ&A: logの計算です。

A 回答 (1件)

{log(n+1)-1}×2×(n+1)/4 + {log(n+1)-2}×2×(n+1)/8 + ・・・



        ↓掛け算を先に計算する

={log(n+1)-1}×(n+1)/2 + {log(n+1)-2}×(n+1)/4 + ・・・

        ↓(n+1)で式をくくる

=(n+1)〔{log(n+1)-1}/2 + {log(n+1)-2}/4 + ・・・〕

        ↓logと分数に式を分ける

=(n+1)〔{log(n+1)}/2 - 1/2 + {log(n+1)}/4 - 2/4 +・・・〕

        ↓さらにlogと分数に分ける

=(n+1)〔log(n+1)(1/2+1/4+1/8+・・・) - (1/2+2/4+3/8+・・・)〕

        ↓式を変形

=1/2{(n+1)log(n+1)(1+1/2+1/2^2+1/2^3+・・・)}
-(n+1)(1/2+2/2^2+3/2^3+・・・)


となってしまうのですが・・・(計算間違ったかな?)
    • good
    • 0
この回答へのお礼

そうですよね。私もそうなってしまって。。
学校でもらったプリントにこう書いてあったのですが、間違いだったのでしょうね。
ご回答ありがとうございました。

お礼日時:2001/11/22 22:31

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aと関連する良く見られている質問

QF_n=(a+b+c)^(2n+1)-{a^(2n+1)+b^(2n+1)+c^(2n+1)} の因数分解

F_n=(a+b+c)^(2n+1)-{a^(2n+1)+b^(2n+1)+c^(2n+1)} 
(n=1,2,3,4,5)
を因数分解せよ、という問題なのですが、どすればよいのでしょうか?

なお、答えは、

F_1=3(b+c)(c+a)(a+b)
F_2=5(b+c)(c+a)(a+b)(Σa^2+Σab)
F_3=7(b+c)(c+a)(a+b)(Σa^4+2Σa^3 b+3Σa^2 b^2+5Σa^2 bc)
F_4=3(b+c)(c+a)(a+b)(3Σa^6+9Σa^5 b+19Σa^4 b^2+35Σa^4 bc+23Σa^3 b^3+63Σa^3 b^2 c)
F_5=11(b+c)(c+a)(a+b)(Σa^8+4Σa^7 b+11Σa^6 b^2+21Σa^6 bc+9Σa^5 b^3+54Σa^5 b^2 c+23Σa^4 b^4+84Σa^4 b^3 c+123Σa^4 b^2 c^2+159Σa^3 b^3 c^2)

のようなのですが、(b+c)(c+a)(a+b)を因数に持つことは分かりますが、残りの因数はどうやってもとめるのでしょうか?

一文字を変数と見て、地道に割り算するしかないのでしょうか?
効率的な計算方法はありますでしょうか?

F_n=(a+b+c)^(2n+1)-{a^(2n+1)+b^(2n+1)+c^(2n+1)} 
(n=1,2,3,4,5)
を因数分解せよ、という問題なのですが、どすればよいのでしょうか?

なお、答えは、

F_1=3(b+c)(c+a)(a+b)
F_2=5(b+c)(c+a)(a+b)(Σa^2+Σab)
F_3=7(b+c)(c+a)(a+b)(Σa^4+2Σa^3 b+3Σa^2 b^2+5Σa^2 bc)
F_4=3(b+c)(c+a)(a+b)(3Σa^6+9Σa^5 b+19Σa^4 b^2+35Σa^4 bc+23Σa^3 b^3+63Σa^3 b^2 c)
F_5=11(b+c)(c+a)(a+b)(Σa^8+4Σa^7 b+11Σa^6 b^2+21Σa^6 bc+9Σa^5 b^3+54Σa^5 b^2 c+23Σa^4 b^4+84Σa^4 b^3 c+123Σa^4 b^2 c^2+159Σa^3 b^3 c^...続きを読む

Aベストアンサー

最後までは計算していませんが、次の方法でできそうです。
F_n = (b+c)(c+a)(a+b)(Σ[ABC] k_ABC a^A b^B c^C) とおきます。
(ここで、A+B+C = 2n+1 です。)
展開すると、F_n = (a^2 b + 略 + 2abc)(Σ[ABC] k_ABC a^A b^B c^C) です。
そして、F_n を例えば、a で A+2 回偏微分、a で B+1 回偏微分、
a で C 回偏微分、した後、a,b,c に 0 を代入します。
F_n=(a+b+c)^(2n+1)-{a^(2n+1)+b^(2n+1)+c^(2n+1)} に対しても同じようにします。
このようにすると、例えば C > 0 であれば、
k_ABC (A+2)!(B+1)!(C)! = (2n+1)! となり、係数が得られます。

QΓ{n+(3/2)}={(2n+1)!!/2^(n+1)}・√(π)

Γ{n+(3/2)}={(2n+1)!!/2^(n+1)}・√(π)
になる理由をできるだけ細かく教えて下さい。

Aベストアンサー

では
・Γ関数の定義
・Γ関数に関する漸化式
・Γ(1/2) = √π となること
を書いてみてください.

Q{√(1)+√(1+2)+√(1+2+3)+…+√(1+2+…+n)}/n^2 → √2/4

n → ∞のとき、
{√(1)+√(1+2)+√(1+2+3)+…+√(1+2+…+n)}/n^2 → √2/4

また、n → ∞のとき、
{√(1+2+…+n)+√(2+3+…+n)+…+√(n-1+n)+√(n)}/n^2 → π√2/8

らしいのですが、証明がかいてありませんでした。
どうか証明を教えていただけないでしょうか。

Aベストアンサー

#3、#5です。

>=lim[n→∞] (1/√2)(1/n)[Σ[k=1,n]{k/n} - 1/n + (n+1)/n]
>=lim[n→∞] (1/√2)(1/n)Σ[k=1,n]{k/n}

1/nが消えるのはわかるのですが、n/n(=1)が消えるのはなぜでしょう?


>でもそのはさみこむ方法は、後半ではうまくいきにくいし、…

後半もうまくいきましたので、以下に説明します。
n=7の場合のグラフを添付します。
区分求積法により、{√(1+2+…+n)+√(2+3+…+n)+…+√(n-1+n)+√(n)}/n^2 は幅(1/n),高さ{√{(k+1)+(k+2)+…+n}}/nの階段状の図形の面積になります。k=0~n-1です。
下限関数 f(x)=√{(1-x^2)/2}
上限関数 g(x,Δ)=√[{(1+Δ)^2-x^2}/2] (但しΔ=1/n)
階段関数 {√{(k+1)+(k+2)+…+n}}/n=√[{n(n+1)-k(k+1)}/(2n^2)]

(1)x=k/nのところで、階段の高い方より上限関数 g(x,Δ)が大きい事を示します。但しk=1~nです。
x=k/nの階段の高い方は√[{n(n+1)-(k-1)k}/(2n^2)]です。
x=k/nの上限関数 g(x,Δ)=g(k/n,1/n)=√[{(1+(1/n))^2-(k/n)^2}/2]=√[{(n+1)^2-k^2}/(2n^2)]
(上限関数) ≧ (階段関数の高い方) を示すには、ルートと分母の(2n^2)が共通なので、
(n+1)^2-k^2 ≧ n(n+1)-(k-1)k を示せば十分です。
{(n+1)^2-k^2}-{n(n+1)-(k-1)k}=n-k+1≧0 より明らかです。

(2)x=k/nのところで、階段の低い方より下限関数 f(x)が小さい事を示します。但しk=0~nです。
x=k/nの階段の低い方は√[{n(n+1)-k(k+1)}/(2n^2)]です。
x=k/nの下限関数 f(x)=f(k/n)=√[{(1-(k/n)^2}/2]=√[(n^2-k^2)/(2n^2)]
(階段関数の低い方) ≧ (下限関数) を示すには、ルートと分母の(2n^2)が共通なので、
n(n+1)-k(k+1) ≧ n^2-k^2 を示せば十分です。
{n(n+1)-k(k+1)}-(n^2-k^2)=n-k≧0 より明らかです。

以上の事から階段関数は下限関数 f(x)と上限関数 g(x,Δ)の間に入る事がわかりました。
下限関数の面積をF,上限関数の面積をG(n),階段関数の面積をA(n)とすると、
F ≦ A(n) ≦ G(n) となります。
F=∫[0→1]f(x)dx=(1/√2)(単位円の面積÷4)=π(√2)/8
G(n)=∫[0→(1+Δ)]g(x,Δ)dx=(1/√2)(半径(1+Δ)の円の面積÷4)={π(√2)(1+Δ)^2}/8 (但し Δ=1/n)
つまり階段関数の面積はπ(√2)/8以上{π(√2)(1+1/n)^2}/8以下になります。
n→∞で階段関数の面積はπ(√2)/8に収束します。

#3、#5です。

>=lim[n→∞] (1/√2)(1/n)[Σ[k=1,n]{k/n} - 1/n + (n+1)/n]
>=lim[n→∞] (1/√2)(1/n)Σ[k=1,n]{k/n}

1/nが消えるのはわかるのですが、n/n(=1)が消えるのはなぜでしょう?


>でもそのはさみこむ方法は、後半ではうまくいきにくいし、…

後半もうまくいきましたので、以下に説明します。
n=7の場合のグラフを添付します。
区分求積法により、{√(1+2+…+n)+√(2+3+…+n)+…+√(n-1+n)+√(n)}/n^2 は幅(1/n),高さ{√{(k+1)+(k+2)+…+n}}/nの階段状の図形の面積になります。k=0~n-1です。
下限関...続きを読む

Qlim[n→∞]∫[0,π/2]{sin^2(nx)}/(1+x)=(1/2)log(π/2 + 1)

lim[n→∞]∫[0,π/2]{sin^2(nx)}/(1+x)=(1/2)log(π/2 + 1)

ということなのですが、区分求積法を使おうとしたのですが、よくわかりません。
複雑ですが、解けた方は教えていただけないでしょうか。

Aベストアンサー

ANo.1様が既に回答を出されているようなので、無意味かも知れませんが・・・、
lim(n→∞)∫[0,π/2]{sin^2(nx)}/(1+x)・・・(1)
(1)においてsin^2(nx)=1/2・(1-cos(2nx))と変形出来る。(・はかけ算の意味)
よって
与式=lim(n→∞)∫[0,π/2](1-cos(2nx))/2(1+x)dx
=lim[n→∞]∫[0,π/2]1/2(1+x)dx - lim[n→∞]∫[0,π/2]cos(2nx))/2(1+x)dx
={1/2・log(1+x)}[0,π/2]-lim(n→∞)∫[0,π/2]cos(2nx))/2(1+x)dx

第一項目の積分は=1/2・log(1+π/2)
第二項目の積分において、f(x)=1/(1+x)は(0~π/2)で積分可能である。従って、そのフーリエ係数はn→∞のとき0に収束する。
(リーマン-ルベグの定理を用いた。)よって第二項目の積分は0となる。

よって、lim(n→∞)∫[0,π/2]{sin^2(nx)}/(1+x)=1/2・log(1+π/2)
となる。

ANo.1様が既に回答を出されているようなので、無意味かも知れませんが・・・、
lim(n→∞)∫[0,π/2]{sin^2(nx)}/(1+x)・・・(1)
(1)においてsin^2(nx)=1/2・(1-cos(2nx))と変形出来る。(・はかけ算の意味)
よって
与式=lim(n→∞)∫[0,π/2](1-cos(2nx))/2(1+x)dx
=lim[n→∞]∫[0,π/2]1/2(1+x)dx - lim[n→∞]∫[0,π/2]cos(2nx))/2(1+x)dx
={1/2・log(1+x)}[0,π/2]-lim(n→∞)∫[0,π/2]cos(2nx))/2(1+x)dx

第一項目の積分は=1/2・log(1+π/2)
第二項目の積分において、f(x)=1/(1+x)は(0~π/2)で積分可能である。従っ...続きを読む

Q(1+h)^n≧1+nh+{n(n-1)/2}h^2

h>0のとき(1+h)^n≧1+nh+{n(n-1)/2}h^2

これを示すのに「右辺は二項定理で展開して昇べき順で並べたときの最初の3項」ってことでは証明になりませんか?
数学的帰納法でしょうか?

あと、0<x<1のときlim[n→∞]nx^n=0
を先の不等式を用いて示せという問題がわかりません。
一見明らかにみえますけど。

Aベストアンサー

この問題の重点は後半にありそれのヒントが前半です。
後半は
∞*0
の形の極限ですから明らかではすみません。
n乗の収束の方が速いとわかっていれば明らかですけど。

二項定理ぐらい使ってもいいと思います。
それさえも証明しなければいけないとしたら
どんなことでも最初から証明を始めなければいけないことになります。

二項定理の証明は数学的帰納法とは限りません。


人気Q&Aランキング

おすすめ情報