プロが教えるわが家の防犯対策術!

基本的なことで申し訳ないのですが、
Tukeyの多重検定、といったら
それはTukey-Kramer法のこと、と理解して
いいのでしょうか?

あるサイトで、多重検定の項目で、
Tukey法は、各群のデータ数(n)が一致する必要があるが、Tukey-Kramer法は一致しなくても良い。
との記載がありまして、多重検定にも
Tukey法と
Tukey-Kramer法の二つがあるのか、よくわからなくて、質問させていただきました。
よろしくお願いします。

このQ&Aに関連する最新のQ&A

A 回答 (2件)

Tukeyの多重比較(多重検定)は当初Tukeyがバランスケース、即ち各群のサンプル数が等しい場合に適用するものとして1952-53年の論文で提唱しました。

その後Tukey本人と、Kramerが独立にアンバランスケースへの拡張を示しました。しかし当時はこの拡張が検定全体の有意水準を保っているかどうかが厳密に証明されていなかったので、バランスケースとアンバランスケースを分けて、前者をTukeyの方法、後者をTukey-Kramerの方法と区別していたようです。1984年になってHayterがTukey-Kramerの方法でも検定全体の有意水準がコントロールされていることを証明したため、現在では両者を特に区別せずに共にTukeyの多重比較と呼ぶことが多いと思います(Kramerさん可愛そうに…)。多くの統計パッケージではTukeyの多重比較でアンバランスケースも処理できると思いますが、正確に言えばその場合Tukey-Kramerの拡張が用いられているのだと思います。
    • good
    • 0
この回答へのお礼

お礼が遅くなり、申し訳ありませんでした。
参考になりました。
統計って、奥が深いのでわからなくなることだらけですm(_ _)m。
非常に助かりました。
ありがとうございました。

お礼日時:2006/01/23 22:49

#1さんの云う通りです.各群の標本数が同一の場合はTukeyです.しかし,異なっていてもよいようにTukey-Kramerが使用さ

れています.もうひとつの手法は,個体数が群間で異なっている場合,Duncanの多重範囲検定を使用してください.検出力はDunnett, Tukey. Duncanの順です.また群数が大きくなると検出力は低下します.
    • good
    • 0
この回答へのお礼

お礼が遅くなりました。
ありがとうございました。
参考になりました。

お礼日時:2006/01/23 22:47

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

QTukeyHSDとTukey法について。

TukeyHSDとTukey法って違うものですか?
統計ソフトRを使っています。Tukeyを用いて多重比較をしたいと思い、調べていると、
TukeyHSD()
→http://www.nanzan-u.ac.jp/~kamiya/r/ana3type.html
とTukey()
→http://aoki2.si.gunma-u.ac.jp/R/tukey.html
がでてきます。これらに違いはあるのでしょうか。どちらを用いれば良いか分からず困っています。
Rも統計も初心者です。お願い致します。

Aベストアンサー

出力されている内容が少し違うだけで、どちらも同じものです。
TukeyHSDはgroup間の差とその信頼区間とp値、Tukeyは統計量とp値を出力しています。
p値をみると同じであることから、それがわかると思います。
データはどちらもhttp://aoki2.si.gunma-u.ac.jp/R/tukey.htmlのテストデータを使用しました。

TukeyHSDの出力結果
diff lwr upr p adj
2-1 1.1964286 -0.6753086 3.06816577 3.630248e-01
3-1 2.9047619 0.8927049 4.91681894 1.975521e-03
4-1 4.7142857 2.7811638 6.64740758 6.970838e-07
5-1 2.7142857 0.7811638 4.64740758 2.687670e-03
3-2 1.7083333 -0.2448214 3.66148809 1.090560e-01
4-2 3.5178571 1.6461199 5.38959435 6.039780e-05
5-2 1.5178571 -0.3538801 3.38959435 1.567591e-01
4-3 1.8095238 -0.2025332 3.82158084 9.414444e-02
5-3 -0.1904762 -2.2025332 1.82158084 9.986795e-01
5-4 -2.0000000 -3.9331219 -0.06687813 3.978055e-02

Tukeyの出力結果
t p
1:2 1.854090 3.630248e-01
1:3 4.187543 1.975521e-03
1:4 7.073685 6.970838e-07
1:5 4.072727 2.687670e-03
2:3 2.537026 1.090560e-01
2:4 5.451580 6.039780e-05
2:5 2.352204 1.567591e-01
3:4 2.608633 9.414444e-02
3:5 0.274593 9.986795e-01
4:5 3.000957 3.978055e-02

出力されている内容が少し違うだけで、どちらも同じものです。
TukeyHSDはgroup間の差とその信頼区間とp値、Tukeyは統計量とp値を出力しています。
p値をみると同じであることから、それがわかると思います。
データはどちらもhttp://aoki2.si.gunma-u.ac.jp/R/tukey.htmlのテストデータを使用しました。

TukeyHSDの出力結果
diff lwr upr p adj
2-1 1.1964286 -0.6753086 3.06816577 3.630248e-01
3-1 2.9047619 0.8927049 4.91681894 1.975521e-03
4-1 4.71428...続きを読む

Q相関係数についてくるP値とは何ですか?

相関係数についてくるP値の意味がわかりません。

r=0.90 (P<0.001)

P=0.05で相関がない

という表現は何を意味しているのでしょうか?
またMS Excelを使ってのP値の計算方法を教えてください。

よろしくお願い致します。

Aベストアンサー

pは確率(probability)のpです。全く相関のない数字を組み合わせたときにそのr値が出る確率をあらわしています。

統計・確率には100%言い切れることはまずありません。というか100%言い切れるのなら統計・確率を使う必要は有りません。
例えばサイコロを5回振って全て同じ目が出る確率は0.08%です。そんな時、そのサイコロを不良品(イカサマ?)と結論つけるとわずかに間違っている可能性が残っています。ただ、それが5%以下ならp=0.05でそのサイコロは正常ではないと結論付けます。
それが危険率です。(この場合はp=0.1%でもいいと思いますが)
相関係数においても相関の有無を結論つけるにはそのrが偶然出る確率を出すか、5%の確率ならrがどれぐらいの値が出るかを知っておく必要が有ります。

>r=0.90 (P<0.001)

相関係数は0.90と計算された。相関がないのに偶然r=0.90 となる確率は0.001以下だと言ってます。

>P=0.05で相関がない

相関がないと結論。(間違っている確率は5%以下)だと言ってます。

エクセルでの計算ですが、まず関数CORRELを使ってr値を出します。xデータがA1からA10に、yデータがB1からB10に入っているとして

r=CORREL(A1:A10,B1:B10)

次にそのr値をt値に変換します。

t=r*(n-2)^0.5/(1-r^2)^0.5

ここでnは組みデータの数です。((x1,y1),(x2,y2),・・・(xn,yn))
最後に関数TDISTで確率に変換します。両側です。

p=TDIST(t値,n-2,2)

もっと簡単な方法があるかも知れませんが、私ならこう計算します。(アドインの分析ツールを使う以外は)

pは確率(probability)のpです。全く相関のない数字を組み合わせたときにそのr値が出る確率をあらわしています。

統計・確率には100%言い切れることはまずありません。というか100%言い切れるのなら統計・確率を使う必要は有りません。
例えばサイコロを5回振って全て同じ目が出る確率は0.08%です。そんな時、そのサイコロを不良品(イカサマ?)と結論つけるとわずかに間違っている可能性が残っています。ただ、それが5%以下ならp=0.05でそのサイコロは正常ではないと結論付けます。
それが危険率です。(この場...続きを読む

Qエクセル STDEVとSTDEVPの違い

エクセルの統計関数で標準偏差を求める時、STDEVとSTDEVPがあります。両者の違いが良くわかりません。
宜しかったら、恐縮ですが、以下の具体例で、『噛み砕いて』教えて下さい。
(例)
セルA1~A13に1~13の数字を入力、平均値=7、STDEVでは3.89444、STDEVPでは3.741657となります。
また、平均値7と各数字の差を取り、それを2乗し、総和を取る(182)、これをデータの個数13で割る(14)、この平方根を取ると3.741657となります。
では、STDEVとSTDEVPの違いは何なのでしょうか?統計のことは疎く、お手数ですが、サルにもわかるようご教授頂きたく、お願い致します。

Aベストアンサー

データが母集団そのものからとったか、標本データかで違います。また母集団そのものだったとしても(例えばクラス全員というような)、その背景にさらならる母集団(例えば学年全体)を想定して比較するような時もありますので、その場合は標本となります。
で標本データの時はSTDEVを使って、母集団の時はSTDEVPをつかうことになります。
公式の違いは分母がn-1(STDEV)かn(STDEVP)かの違いしかありません。まぁ感覚的に理解するなら、分母がn-1になるということはそれだけ結果が大きくなるわけで、つまりそれだけのりしろを多くもって推測に当たるというようなことになります。
AとBの違いがあるかないかという推測をする時、通常は標本同士の検証になるわけですので、偏差を余裕をもってわざとちょっと大きめに見るということで、それだけ確証の度合いを上げるというわけです。

Q多重比較をエクセルでやるには?

心理学のレポートの課題を出されているのですが
多重比較ってエクセルでやるにはどの関数を
使えばいいのでしょうか?
(ちなみに私が使っているのはエクセル97です)
二つの項目の有意差を検定するならt検定を使えるのですが
多重比較となるとt検定は使えないんですよね。
ご存知の方、教えてください。よろしくお願いします。

Aベストアンサー

 まず質問についての答えです。
 エクセルで多重比較をやることは不可能ではないと思います。ただ、単一の関数を使って簡単にやるのは、無理だと思います。やるとすれば、多重比較の計算式をエクセル上で実行するという方法しかないでしょう。

 って言っても、なかなか難しいと思います。そこで、インターネット上で分散分析と多重比較をやってくれるページがあるので、ご紹介します。JavaScript-STARというものですが、参考URLに載せておくので行ってみてください。

参考URL:http://www.kisnet.or.jp/nappa/software/star/index.htm

QTukeyの検定のやり方について

二元分析までは終わりましたが、Tukeyの検定が何を読んでもできません。ギブアップです。どなたかTukeyの検定をしてくださる方を教えてください。実験は作物の生育調査です。平均値で二元分析をしたので検定数は少ないです。よろしくお願いいたします。

Aベストアンサー

Tukeyの方法で検定したいデータがあるけどやり方が分からない、ということでしょうか。
なんかの統計ソフトを入手するのがいいと思いますが(市販品なら例えばJMP(http://www.jmp.com/japan/)、フリーソフトなら例えばR(http://www.r-project.org/))、サイト上であれば以下のURLで出来ます。
http://www.gen-info.osaka-u.ac.jp/testdocs/tomocom//tukey.html

Q統計学的に信頼できるサンプル数って?

統計の「と」の字も理解していない者ですが、
よく「統計学的に信頼できるサンプル数」っていいますよね。

あれって「この統計を調べたいときはこれぐらいのサンプル数があれば信頼できる」という決まりがあるものなのでしょうか?
また、その標本数はどのように算定され、どのような評価基準をもって客観的に信頼できると判断できるのでしょうか?
たとえば、99人の専門家が信頼できると言い、1人がまだこの数では信頼できないと言った場合は信頼できるサンプル数と言えるのでしょうか?

わかりやすく教えていただけると幸いです。

Aベストアンサー

> この統計を調べたいときはこれぐらいのサンプル数があれば信頼できる・・・
 調べたいどの集団でも、ある一定数以上なら信頼できるというような決まりはありません。
 何かサンプルを集め、それをなんかの傾向があるかどうかという仮説を検証するために統計学的検定を行って、仮設が否定されるかされないかを調べる中で、どの検定方法を使うかで、最低限必要なサンプル数というのはあります。また、集めたサンプルを何か基準とすべき別のサンプルと比べる検定して、基準のサンプルと統計上差を出すに必要なサンプル数は、比べる検定手法により計算できるものもあります。
 最低限必要なサンプル数ということでは、例えば、ある集団から、ある条件で抽出したサンプルと、条件付けをしないで抽出したサンプル(比べるための基準となるサンプル)を比較するときに、そのサンプルの分布が正規分布(正規分布解説:身長を5cmきざみでグループ分けし、低いグループから順に並べたときに、日本人男子の身長なら170cm前後のグループの人数が最も多く、それよりも高い人のグループと低い人のグループの人数は、170cmのグループから離れるほど人数が減ってくるような集団の分布様式)でない分布形態で、しかし分布の形は双方とも同じような場合「Wilcoxon符号順位検定」という検定手法で検定することができますが、この検定手法は、サンプルデータに同じ値を含まずに最低6つのサンプル数が必要になります。それ以下では、いくらデータに差があるように見えても検定で差を検出できません。
 また、統計上差を出すのに必要なサンプル数の例では、A国とB国のそれぞれの成人男子の身長サンプルがともに正規分布、または正規分布と仮定した場合に「t検定」という検定手法で検定することができますが、このときにはその分布を差がないのにあると間違える確率と、差があるのにないと間違える確率の許容値を自分で決めた上で、そのサンプルの分布の値のばらつき具合から、計算して求めることができます。ただし、その計算は、現実に集めたそれぞれのサンプル間で生じた平均値の差や分布のばらつき具合(分散値)、どのくらいの程度で判定を間違える可能性がどこまで許されるかなどの条件から、サンプル間で差があると認められるために必要なサンプル数ですから、まったく同じデータを集めた場合でない限り、計算上算出された(差を出すために)必要なサンプル数だけサンプルデータを集めれば、差があると判定されます(すなわち、サンプルを無制限に集めることができれば、だいたい差が出るという判定となる)。よって、集めるサンプルの種類により、計算上出された(差を出すために)必要なサンプル数が現実的に妥当なものか、そうでないのかを、最終的には人間が判断することになります。

 具体的に例示してみましょう。
 ある集団からランダムに集めたデータが15,12,18,12,22,13,21,12,17,15,19、もう一方のデータが22,21,25,24,24,18,18,26,21,27,25としましょう。一見すると後者のほうが値が大きく、前者と差があるように見えます。そこで、差を検定するために、t検定を行います。結果として計算上差があり、前者と後者は計算上差がないのにあると間違えて判断する可能性の許容値(有意確率)何%の確率で差があるといえます。常識的に考えても、これだけのサンプル数で差があると計算されたのだから、差があると判断しても差し支えないだろうと判断できます。
 ちなみにこの場合の差が出るための必要サンプル数は、有意確率5%、検出力0.8とした場合に5.7299、つまりそれぞれの集団で6つ以上サンプルを集めれば、差を出せるのです。一方、サンプルが、15,12,18,12,21,20,21,25,24,19の集団と、22,21125,24,24,15,12,18,12,22の集団ではどうでしょう。有意確率5%で差があるとはいえない結果になります。この場合に、このサンプルの分布様式で拾い出して差を出すために必要なサンプル数は551.33となり、552個もサンプルを抽出しないと差が出ないことになります。この計算上の必要サンプル数がこのくらい調査しないといけないものならば、必要サンプル数以上のサンプルを集めて調べなければなりませんし、これだけの数を集める必要がない、もしくは集めることが困難な場合は差があるとはいえないという判断をすることになるかと思います。

 一方、支持率調査や視聴率調査などの場合、比べるべき基準の対象がありません。その場合は、サンプル数が少ないレベルで予備調査を行い、さらにもう少しサンプル数を増やして予備調査を行いを何回か繰り返し、それぞれの調査でサンプルの分布形やその他検討するべき指数を計算し、これ以上集計をとってもデータのばらつきや変化が許容範囲(小数点何桁レベルの誤差)に納まるようなサンプル数を算出していると考えます。テレビ視聴率調査は関東では300件のサンプル数程度と聞いていますが、調査会社ではサンプルのとり方がなるべく関東在住の家庭構成と年齢層、性別などの割合が同じになるように、また、サンプルをとる地域の人口分布が同じ割合になるようにサンプル抽出条件を整えた上で、ランダムに抽出しているため、数千万人いる関東の本当の視聴率を割合反映して出しているそうです。これはすでに必要サンプル数の割り出し方がノウハウとして知られていますが、未知の調査項目では必要サンプル数を導き出すためには試行錯誤で適切と判断できる数をひたすら調査するしかないかと思います。

> どのような評価基準をもって客観的に信頼できると判断・・・
 例えば、工場で作られるネジの直径などは、まったくばらつきなくぴったり想定した直径のネジを作ることはきわめて困難です。多少の大きさのばらつきが生じてしまいます。1mm違っても規格外品となります。工場では企画外品をなるべく出さないように、統計を取って、ネジの直径のばらつき具合を調べ、製造工程をチェックして、不良品の出る確率を下げようとします。しかし、製品をすべて調べるわけにはいきません。そこで、調べるのに最低限必要なサンプル数を調査と計算を重ねてチェックしていきます。
 一方、農場で生産されたネギの直径は、1mmくらいの差ならほぼ同じロットとして扱われます。また、農産物は年や品種の違いにより生育に差が出やすく、そもそも規格はネジに比べて相当ばらつき具合の許容範囲が広くなっています。ネジに対してネギのような検査を行っていたのでは信頼性が損なわれます。
 そもそも、統計学的検定は客観的判断基準の一指針ではあっても絶対的な評価になりません。あくまでも最終的に判断するのは人間であって、それも、サンプルの質や検証する精度によって、必要サンプルは変わるのです。

 あと、お礼の欄にあった専門家:統計学者とありましたが、統計学者が指摘できるのはあくまでもそのサンプルに対して適切な検定を使って正しい計算を行ったかだけで、たとえ適切な検定手法で導き出された結果であっても、それが妥当か否か判断することは難しいと思います。そのサンプルが、何を示し、何を解き明かし、何に利用されるかで信頼度は変化するからです。
 ただ、経験則上指標的なものはあります。正規分布を示すサンプルなら、20~30のサンプル数があれば検定上差し支えない(それ以下でも問題ない場合もある)とか、正規分布でないサンプルは最低6~8のサンプル数が必要とか、厳密さを要求される調査であれば50くらいのサンプル数が必要であろうとかです。でも、あくまでも指標です。

> この統計を調べたいときはこれぐらいのサンプル数があれば信頼できる・・・
 調べたいどの集団でも、ある一定数以上なら信頼できるというような決まりはありません。
 何かサンプルを集め、それをなんかの傾向があるかどうかという仮説を検証するために統計学的検定を行って、仮設が否定されるかされないかを調べる中で、どの検定方法を使うかで、最低限必要なサンプル数というのはあります。また、集めたサンプルを何か基準とすべき別のサンプルと比べる検定して、基準のサンプルと統計上差を出すに必要な...続きを読む

Qエクセルで計算すると2.43E-19などと表示される。Eとは何ですか?

よろしくお願いします。
エクセルの回帰分析をすると有意水準で2.43E-19などと表示されますが
Eとは何でしょうか?

また、回帰分析の数字の意味が良く分からないのですが、
皆さんは独学されましたか?それとも講座などをうけたのでしょうか?

回帰分析でR2(決定係数)しかみていないのですが
どうすれば回帰分析が分かるようになるのでしょうか?
本を読んだのですがいまいち難しくて分かりません。
教えてください。
よろしくお願いします。

Aベストアンサー

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるための指数表記のことですよ。
・よって、『2.43E-19』とは?
 2.43×1/(10の19乗)で、
 2.43×1/10000000000000000000となり、
 2.43×0.0000000000000000001だから、
 0.000000000000000000243という数値を意味します。

補足:
・E+数値は 10、100、1000 という大きい数を表します。
・E-数値は 0.1、0.01、0.001 という小さい数を表します。
・数学では『2.43×10』の次に、小さい数字で上に『19』と表示します。→http://ja.wikipedia.org/wiki/%E6%8C%87%E6%95%B0%E8%A1%A8%E8%A8%98
・最後に『回帰分析』とは何?下の『参考URL』をどうぞ。→『数学』カテゴリで質問してみては?

参考URL:http://ja.wikipedia.org/wiki/%E5%9B%9E%E5%B8%B0%E5%88%86%E6%9E%90

★回答
・最初に『回帰分析』をここで説明するのは少し大変なので『E』のみ説明します。
・回答者 No.1 ~ No.3 さんと同じく『指数表記』の『Exponent』ですよ。
・『指数』って分かりますか?
・10→1.0E+1(1.0×10の1乗)→×10倍
・100→1.0E+2(1.0×10の2乗)→×100倍
・1000→1.0E+3(1.0×10の3乗)→×1000倍
・0.1→1.0E-1(1.0×1/10の1乗)→×1/10倍→÷10
・0.01→1.0E-2(1.0×1/10の2乗)→×1/100倍→÷100
・0.001→1.0E-3(1.0×1/10の3乗)→×1/1000倍→÷1000
・になります。ようするに 10 を n 乗すると元の数字になるた...続きを読む

Qデータが正規分布しているか判断するには???

初歩的なことですが。。急いでいます。
おわかりになる方 教えてください。
サンプリングしたデータが正規分布しているかどうかを確認するにはどうすればよろしいでしょうか。
素人でも分かるように説明したいのですが。。
定性的にはヒストグラムを作り視覚的に訴える方法があると思います。今回は定量的に判断する方法を知りたいです。宜しくお願いします。

Aベストアンサー

>機械的に処理してみるとできました。
>でも理屈を理解できていません。
 とりあえず、理屈は後で勉強するとして、有意水準5%で有意差あり(有意確率が0.05以下)であれば、正規分布ではないと結論づけてお終いでいいのではないですか。
>この検定をもっと初心者でもわかりやすく解説しているサイト等ご存じありませんか。
 私が知っている限りでは、紹介したURLのサイトが最も丁寧でわかりやすいサイトでした。
>データの区間を分けるときのルール等ありますでしょうか。
 ヒストグラムを作成する場合、区間距離、度数区分数は、正規的なグラフになるように試行錯誤で行うことが多い(区間距離や度数区分数を本来の分布に則するようにいろいろ当てはめて解釈する。データ個数の不足や、データの取り方、または見かけ上の分布によりデータのばらつきが正しく反映されて見えないことがあるため)のですが、度数区分数は、機械的に、
=ROUNDUP(1+LOG10(データ個数)/LOG10(2),0):エクセル計算式
で区分数を求める方法があります。
 また、区間距離は、=ROUND((データの最高値-最低値)/(度数区分数値-1),有効桁数)で求め、区分の左端は、
=ROUNDUP(データの最低値-区間距離/2,有効桁数)
右端は=ROUNDUP(データの最高値+区間距離/2,有効桁数)
とします。
 区間がと度数区分数が出たら、その範囲にあるデータ数を数えて、ヒストグラムができます。
 
>最小側、最大側は 最小値、最大値を含んだ値としなければならないのでしょうか。
 ヒストグラム作成の処理に関しては、上記を参考にしてください。
 その前に、データの最小値と最大値が、正しくとれたデータか検討するため、棄却検定で外れ値が存在するか否かを検定し、外れ値が存在しないと結論づけられたら、正規分布の検定を行ってみてください。もし外れ値が存在する可能性があれば、そもそも、そのデータの信頼性が失われます。サンプリング手法の再検討(データの取り方に偏りがなかったか、無作為に設定してデータを取っていたか等)をして、再度データを得る必要があります。また、そもそも検定する以前に、データ数が少ないと判断が付かなくなってしまいますので、データ数は十分揃える(少なくとも20~30個)必要もあります。

>機械的に処理してみるとできました。
>でも理屈を理解できていません。
 とりあえず、理屈は後で勉強するとして、有意水準5%で有意差あり(有意確率が0.05以下)であれば、正規分布ではないと結論づけてお終いでいいのではないですか。
>この検定をもっと初心者でもわかりやすく解説しているサイト等ご存じありませんか。
 私が知っている限りでは、紹介したURLのサイトが最も丁寧でわかりやすいサイトでした。
>データの区間を分けるときのルール等ありますでしょうか。
 ヒストグラムを作成する場合、区...続きを読む

Qサンプル数の異なる2群間におけるT検定について

サンプル数の異なる(50,15)2群間の身長の比較を行うのに、T検定をするよう指示を受けました。これは、長男と次男での出産時の身長に差があるかを調べるためですが、長男50人分と次男15人分(母親は異なる)のデータのため、サンプル数が違います。またT検定は私の理解では平均の比較(2群の場合)を行うものであるため、平均ではないこれらにどうしてT検定が良いのか、また統計ソフト(STATISTICAかエクセル)を使う場合にどのようにデータを入力すれば良いのかわかりません。
どなたかご存知の方がいらっしゃればアドバイスをいただけたらうれしいです。
よろしくお願いします。

Aベストアンサー

>平均ではないこれらにどうしてT検定が良いのか
 t検定は、2つの集団の平均値の差について検定する、すなわち、有意差があるかどうかを判定します。平均ではないように見えても、検定の計算式の中に、2群の平均値を用いています。
 ただ、前提時要件があって、2群が正規分布していることが必要です。サンプルを選んだときに、無作為抽出していたり、サンプル数が1000ほどあれば、正規分布を想定できます。

 検定法は、どの方法を選ぶかは、研究者の自由です。わたしがt検定を多用するのは、正規分布を想定でき、計算式が分かりやすく、サンプル数が2群で異なっても良い、その数も少なくて良い(大差があるので、1群3例でも有意差をだしています)、そして有意差が出やすいからです。

 この場合は、正規分布しているという条件を満たしているとはいえないだろうと判断します。その場合は、F検定をしてください。これは、2群の平均値ではなく、バラツキによって検定する方法です。正規分布している必要は無いとされています。
 F検定で有意差があれば、問題ありません。t検定では有、F検定ではなし、になると方針が定まりませんが(現在このデータで悩んでいます)。

>どのようにデータを入力すれば良いのか
 t検定を指示した人は、身近にいないのでしょうか。その人に訊くのが一番です。身近にいないのなら、いないと返答があれば、書き込みますが。 というのも、大学などの研究テーマだと、指導教員をさしおいて、はマズイノデ。もしも、このテーマに興味を持てば、私が実施して先に発表します。こんな研究内容がハッキリ分かる書き込みを4年生がやったら、研究室は追放ですね。
 長男、次男だけではなく、三男、四男となると多重比較という方法になります。この場合、H検定(エクセルだけでは無理でしょう)を使います。

>平均ではないこれらにどうしてT検定が良いのか
 t検定は、2つの集団の平均値の差について検定する、すなわち、有意差があるかどうかを判定します。平均ではないように見えても、検定の計算式の中に、2群の平均値を用いています。
 ただ、前提時要件があって、2群が正規分布していることが必要です。サンプルを選んだときに、無作為抽出していたり、サンプル数が1000ほどあれば、正規分布を想定できます。

 検定法は、どの方法を選ぶかは、研究者の自由です。わたしがt検定を多用するのは、正規分布を想...続きを読む

Q多重検定について

多重検定(Tukey test)についてです。

最近論文を読み始めたのですが、棒グラフの上にあるaやb、cといった記号の意味が分からないで困っています。

ttsetは*が棒グラフの上にあるときは優位差ありということで理解しているのですが、Tukeyの場合のaやbは何を意味するのでしょうか??

Aベストアンサー

Tukey 法は、多群間の比較です。例えば、棒グラフ (のデータ) で、a のついたものやb、c のついたものがそれぞれ複数ありませんか?

もし そうであれば、同じアルファベットのついたデータ群間 (例えば、a-a 間)では、平均値に有意差が無く、異なるアルファベットのデータ群間(例えば、a-b 間)では 有意差がある という意味です (ただ、グラフの説明 〔アルファベットの意味も含む〕 が 論文のどこかに書かれているはずですので、ちゃんとチェックもなさって下さい)。
.


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング