ウォーターサーバーとコーヒーマシンが一体化した画期的マシン >>

初歩的な質問で申し訳ございません。現在、大学の授業で工業熱力学を習っている者です。自分では「実際の機関では摩擦や絞り損失で不可逆変化を行うため仕事は小さくなる」ことは理解しているつもりだったのですが、次週みんなの前で、「実際にブレイトンサイクルとオットーサイクルのPV線図を書いて、どのような形になるか、どのように不可逆変化で仕事が小さくなるのかわかりやすく発表しなさい」という課題が出て、まわりに聞いたり様々な本を調べてもなかなか実際のPV線図の形を詳しく説明しているものを見つけられずに困っております。ヒントでも結構なのでどなたか詳しく教えていただけないでしょうか?また、参考になる文献やホームページを教えていただけないでしょうか?

このQ&Aに関連する最新のQ&A

A 回答 (1件)

 


 
検索をしましょう。
Otto cycle
http://www.google.com/search?num=100&hl=ja&as_qd …

Brayton cycle
http://www.google.com/search?num=100&hl=ja&as_qd …


検索結果の一部です。
損失をPV平面で角が丸っこくなってしまうことにつなげて言えばどうでしょう。排気吸入の所なんか理論的には横一ですよね。PV平面上で右回り左回りがエネの収支どっちなのか、とか。
http://techni.tachemie.uni-leipzig.de/otto/otto_ …

こっちは大型機が多いから、損失ってどんなでしょう?
どんな積極策で効率を上げてるかをまとめるとか。
http://www.qrg.northwestern.edu/thermo/design-li …

単純理論での計算値は教科書にもあると思いますが。
http://web.mit.edu/16.unified/www/FALL/thermodyn …


付録;
直接は役立たないと思いますが太陽光発電の長文読み物。Rankine、Stirkling、Brayton
http://www.powerfromthesun.net/chapter12/Chapter …
 
 
    • good
    • 0

このQ&Aに関連する人気のQ&A

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qエントロピー変化の計算

完全気体の圧力がPiからPfまで等温変化するときのエントロピー変化を計算せよ、という問題があります。しかしどのように計算すれば良いのか分かりません。この答えはΔS=nR*ln(Pi/Pf)だそうです。

以下は自分の考えです。
dS=dq/T と表されるのでΔS=∫(dq/T)=q/T (積分範囲はi→f)となり、熱を求めようと思いました。
等温変化なのでΔU(内部エネルギー変化)=q+w=0 (q:熱 w:仕事)が成り立ち、q=-wとなり、仕事を求めばいいと思うのですがどのようにwを求めていいのか分かりません。圧力一定で、体積が変化する場合なら求められるのですが・・・。

どなたかお分かりになる方、教えていただければ幸いです。

Aベストアンサー

なんだか、質問も回答もいまひとつ混乱しているようなので強いて補足させてもらうと、
まず熱力学第一法則というのはdQ=dU+pdV
これは、系(気体)に加えられた微小熱量dQが、
系の内部エネルギーの微小変化量dUと、系が行った
微小仕事pdVの和になるということです。

それで、今は等温変化だから、理想気体ではdU=0
よって、dQ=pdV
そして、可逆過程ではdS=dQ/T
よって、系のエントロピー変化の"総量"は
∫dS=∫pdV/T=∫p/TdV また、pV=nRTより両辺の微分を取ると
d(pV)=d(nRT)⇔pdV+Vdp=nRdT(nもRも定数だからです)
そして今dT=0より、結局pdV=-Vdp 状態方程式でVをpであらわし
よって、∫dS=∫pdV/T=∫-Vdp/T=∫-(nR/p)dp
=-nR[logp](p=pi~pf)
=nRlog(pi/pf)

余談ですけど、なぜ可逆過程なのにエントロピー変化があるのかというと、ひとつは、断熱系と混同しがちだからです。dS≧dQ/Tというのが、一番基本的なものなのです。断熱系dQ=0の場合のみdS≧0となりエントロピー増大則になります。また
等温変化の可逆過程では、dS=dQ/Tと、=になりましたけど、
これを高熱源や低熱源を含めた全体の系に適用すると、全てを含めた全体は断熱系になっているから、
dQ=0より、エントロピー変化はありません。
質問の場合なら、一見エントロピーはΔS=nR*ln(Pi/Pf)
と増加しているようですが(膨張を過程),それは気体のエントロピーのみ考えているからであり、
完全気体が高熱源から準静的に熱量Qをもらっている
はずで、逆に言うと高熱源は熱量Qを失っています。
だから、高熱源はエントロピーQ/Tだけ失っているから
完全気体と高熱源をあわせた系のエントロピー変化は
-Q/T+nR*ln(Pi/Pf)=0となって、結局全体で考えれば
エントロピー変化はありません。カルノーサイクル
の例も一応挙げとくと、
高熱源のエントロピー変化量:-Q/T1
低熱源〃:(Q-W)/T2
ですけど、カルノーサイクルの効率は1-(T2/T1)より
W=Q(1-T2/T1)∴低熱源:Q/T1となって、高熱源と低熱源
をあわせた系全体のエントロピーの変化はありません。

なんだか、質問も回答もいまひとつ混乱しているようなので強いて補足させてもらうと、
まず熱力学第一法則というのはdQ=dU+pdV
これは、系(気体)に加えられた微小熱量dQが、
系の内部エネルギーの微小変化量dUと、系が行った
微小仕事pdVの和になるということです。

それで、今は等温変化だから、理想気体ではdU=0
よって、dQ=pdV
そして、可逆過程ではdS=dQ/T
よって、系のエントロピー変化の"総量"は
∫dS=∫pdV/T=∫p/TdV また、pV=nRTより両辺の微分を取ると
d(pV)=d(nRT)⇔pdV+Vdp=nRdT(nもRも定数...続きを読む

Qスターリングサイクルの熱効率を求めたいですのですが分かりません。

スターリングサイクルの熱効率を求めたいですのですが分かりません。
状態A,B,C,Dの圧力、体積、温度はそれぞれ(Pa,Va,Ta)(Pb,Va,Tb)(Pc,Vc,Tc)(Pd,Vc,Td)。比熱Cp、Cvは一定とする。
等温過程(A→B,C→D)と定積過程(B→C,D→A)の組み合わせ。高温の熱源(Th)にA→Bで接触、低温の熱源(Tl)にC→D接触している。
こういう問題なんですが、解いても答えが合いませんでした。違うところがあったら指摘してください。お願いします。
A→Bの過程を(1)とし、B→Cの過程を(2)、C→Dの過程を(3)、D→Aの過程を(4)とする。

Q(1)=Cv(Th-Tl)
Q(2)=R×Th×log(Vc-Va)
Q(3)=Cv(Tl-Th)
Q(4)=R×Tl×log(Va-vc)

η=1-{Cv(Th-Tl)+R×Th×log(Vc-Va)}/{Cv(Tl-Th)+R×Tl×log(Va-vc)}

Aベストアンサー

理想的なカルノーサイクルでは,熱効率は一意的に
η= ΔT/Th = 1 - Tl/Th
というわけですね。

http://ja.wikipedia.org/wiki/カルノーサイクル

一般にスターリングエンジンでD→A,B→Cの定積過程における熱交換が無視できる場合に,
η = [ R(Th - Tl)log(Vc/Va) ] / [ Cv(Th - Tl) + RTh log(Vc/Va) ]
≒[ R(Th - Tl)log(Vc/Va) ] / [ RTh log(Vc/Va) ]
= (Th - Tl)/Th = 1 - Tl/Th
となると思います。

Qオットーサイクルと現実の4サイクルガソリン機関の相違点

タイトルにもあるとおり「オットーサイクル」と「現実の4サイクルガソリン機関」の相違点って何でしょうか?どなたか教えてください。

Aベストアンサー

実際のガソリンエンジンでは、上死点前で燃焼を開始し圧縮しながら内圧が上昇し・そのピークは
上死点を若干過ぎたところでピークを迎えます。上死点で瞬時に燃焼・昇圧とはいきません。また
排気は燃焼ガスの熱と圧力がある為に理論図のように瞬時に大気圧までは低下しません。
吸気の際はガソリンエンジンではスロットルバルブがある為にシリンダーへの流入量が制限される
為に内圧は下死点前まで負圧になります(過給エンジンでは正圧で押し込めますが)。
P-V線図だと実際のエンジンは角部が丸まり・吸排気は直線で表示されているものが上下に楕円
状の形になります。

Q断熱膨張におけるエントロピー変化について

断熱膨張で、
可逆的の場合、
ΔS(系・外界ともに)=0でΔStot=0(Δq=0より)
不可逆の場合、
ΔS(系)=nCv,mln(t1/t2)+nRln(V1/V2)
ΔS(外界)=0 ΔStot>0より自発的に起こる。
という理解をしているのですが、なぜ不可逆の場合、ΔS(系)はΔS=Δq/Tの式に反して正の値を取るのでしょうか?

Aベストアンサー

もし理想気体を考えておられるのでしたら不可逆的断熱膨張として質問者さんが計算しておられるものに問題があります。たとえば初期にV1だった理想気体を、連結した真空側の容器に広げて合計体積をV2(=V1+V1')にしたとします。エントロピーは状態量ですから初めと終わりが決まれば差は決まります。但し、変化量の計算は準静的ルートに沿って行います。断熱可逆膨張したとすれば(表記T1, T2, V1, V2が質問者さんと逆になりますが)
ΔS=∫(Cv/T)dT+∫(P/T)dV=Cv∫(1/T)dT+R∫(1/V)dV
=Cvln(T2/T1)+Rln(V2/V1)...(1)
となります。そして断熱可逆膨張については
T2={(V1/V2)^(γ-1)}T1...(2)
が成り立ちます。(この式の導出に準静的過程の要請が含まれています。)ここでγ=Cp/Cvであり、理想気体ならばCp-Cv=Rですからγ-1=R/Cvです。さて(1)を計算すると
ΔS=Cvln{(V1/V2)^(γ-1)}+Rln(V2/V1)
=Cv{(γ-1)ln(V1/V2)+(R/Cv)ln(V2/V1)}
=Cv{(γ-1)ln(V1/V2)+(γ-1)ln(V2/V1)}
=Rln{(V1/V2)(V2/V1)}
=0
となります。理想気体の断熱膨張ではエントロピーは増えません。等温過程ならばエントロピーが増大してその量はΔS=Rln(V2/V1)です。これは熱源からとった熱量をTで割ったものです。

>なぜ不可逆の場合、ΔS(系)はΔS=Δq/Tの式に反して正の値を取
>るのでしょうか?
もし、理想気体の膨張の話ではなくて、断熱過程でエントロピーの増大が起こったとしたら、それは熱の流入によるものではなく内部でのエントロピー生成です。
dS=dQ/T
は可逆過程のみでなりたちます。不可逆過程ならば
dS>dQ/T
となります。Clausiusのいう非補正熱をdQ'とかけば
dS=dQ/T+dQ'/T
となります。このdQ'/Tに対応するものです。

もし理想気体を考えておられるのでしたら不可逆的断熱膨張として質問者さんが計算しておられるものに問題があります。たとえば初期にV1だった理想気体を、連結した真空側の容器に広げて合計体積をV2(=V1+V1')にしたとします。エントロピーは状態量ですから初めと終わりが決まれば差は決まります。但し、変化量の計算は準静的ルートに沿って行います。断熱可逆膨張したとすれば(表記T1, T2, V1, V2が質問者さんと逆になりますが)
ΔS=∫(Cv/T)dT+∫(P/T)dV=Cv∫(1/T)dT+R∫(1/V)dV
=Cvln(T2/T1)+Rln(V2/V1)...(1)
...続きを読む

Q単位法線ベクトルの問題なんですが。。。

曲面 4x^2y+z^3 = 4 上の点P(1, -1, 2)における単位法線ベクトルnを求めよ.

という問題です.

他の質問を見てf = (x,y,z) = 4x^2y+z^3-4
とするのはわかったのですがgradfがわからないです。。。

Aベストアンサー

未消化のgrad fを使わなくても以下のように出来ます。
いずれにしてもただ丸写しするのではなく教科書や講義ノートや参考書など
を復習して基礎的なことを勉強して、理解するだけの自助努力が大切です。

f(x,y,z)=4(x^2)y+z^3-4=0

全微分して
 8xydx+4(x^2)dy+3(z^2)dz=0

点P(1,-1,2)の座標を代入
 -8dx+4dy+12dz=0
 4(-2,1,3)・(dx,dy,dz)=0
法線ベクトル:±(-2,1,3)
 |(-2,1,3)|=√(4+1+9)=√14
単位法線ベクトルn=±(-2,1,3)/√14

Qねじの「おねじ」と「めねじ」とは?

ねじの「おねじ」と「めねじ」は構造的にどう違うのでしょうか? JISの用語記述では

おねじ=ねじ山が円筒形又は円錐の外面にあるねじ
めねじ=ねじ山が円筒形又は円錐の内面にあるねじ

とあります。これは単純におねじ=ボルト  めねじ=ナット と考えていいのかと思っていたのですが、用語集の中に

平行ねじ=ねじ山が円筒の内面、または外面にあるねじ

というものがあり混乱してしまいました。 すごく初歩的な問題なのですが、お願いします。

Aベストアンサー

こんにちは。
なんと!ネジには平行じゃないテ-パ-ネジがあるのです。
??って思うかも知れませんが 気密を必要とする 接続(通常パイプ関係が多い)に使用します。
ネジ込み初めはガタガタで 最後にギュってしまります。JISでは以前はPT 今はRCネジと言います。
で 平行ネジの記述は それらに対して平行といったので メネジ オネジを含んだ言い方ですね。
つまり 平行ネジにも テ-パ-ネジにも オネジメネジは有るのです。

Qポアソン比と張力の関係!?

長さl、ヤング率Eの一様な棒の一端を固定し、
他端にTの張力を加えたとき、棒の体積ΔVだけ
変化した。ポアッソン比を求めよ。

という問題で苦戦しています。
ポアッソン比とはσ=Δd/d/Δl/l
と書いてあるのですがまったく分かりません。
いろいろ調べてみたのですが、E=2G(1+μ)この
公式はよく分からないし、
p(張力)=E(ヤング率)a(伸び率)
と書いてあったのですが、その伸び率も分かりません。
火曜日提出の課題なのですが分からないので教えてください。
お願いします。

Aベストアンサー

普通の材料力学のテキストに載っているような問題ですが、テキストを読むよりここでの回答の方がよく理解できた(?)ということもままありますから(←以下の回答がそれに該当するかどうかはまったく別)、蛇足ながら知識の整理をと回答のヒントを書いておきます。
●ポアソン比・・・縦と横の歪みの比
長さL0、直径d0の丸棒(あるいは横幅d0の角棒)を引っ張っると棒は引っ張り方向に△lだけ伸びて長さがLになり、幅は△dだけ縮んでdになったとします。このとき単位あたりの伸びあるいは縮みを”ひずみ”と呼んでεで表すと2つのひずみが定義できますね。すなわち
(1) ε=(L-L0)/L0=△L/L0 ・・・縦ひずみ
(2) ε’=(d-d0)/d0=△d/d0・・・横ひずみ
この縦ひずみと横ひずみの比は材料によって一定の値をとることが知られていますが、その比を
(3) ν=-ε’/ε 
と表して、このν(質問ではσと表記)をポアソン比と
呼んでいます。
●E:ヤング率・・・応力と歪の間の比例係数
一端が壁に固定されている棒を考える(←両端から引っ張ってもよい)。引っ張り方向に垂直な断面ABの面積をAとし、引っ張る力をPとした場合、単位断面積あたりに作用する力を応力(引っ張る場合:引っ張り応力、圧縮する場合:圧縮応力という)と呼び次式で定義されます。
(4) σ=P/A ・・・応力
応力(4)とひずみ(1)の間に比例関係がある場合、比例乗数をEとすると
(5) σ=Eε
と表され、この関係をフックの法則と呼んでいますが、この比例定数Eをヤング率(縦弾性係数)と呼んでいます。
●横弾性係数・・・せん断応力とせん断歪みの間の比例係数
右図のように一端に   A|    ↓P
加重Pが作用する場    |--- 
合、AB面には上の   ↑|    |
方向に応力が発生し   B|---
その合計は加重Pに    |
等しくなります。こ
のような作用面に沿って生じる応力を「せん断応力」と呼び、これは次式で定義されます。
(6) τ=P/A (A:ABの面積)
次に、6面体ABCDの周辺にせん断応力が作用すると、変形します。その変形分をせん断歪と呼び、普通γの記号で表されます(図はここではうまく書けませんので適当なテキストを見てください)。せん断応力τとせん断歪γの間にも比例関係が成立して
(7) τ=Gγ
なる関係があります。このGを横弾性係数(あるいは剛性率)と呼んでいます。
●E=2G(1+ν)
以上の話から、この式はヤング率と横弾性係数、ポアソン比の間に成り立つ関係を表していることが分かります。この式は理論的に導かれますが、ここでは大変なので適当な材料力学のテキストを参照してください。
>p(張力)=E(ヤング率)a(伸び率)
と書いてあったのですが
(4)と(5)より
(8) P/A=Eε⇒P=EεA⇒P=Eε(A:単位面積とする)

>長さL、ヤング率Eの一様な棒の一端を固定し、
他端にTの張力を加えたとき、棒の体積ΔVだけ
変化した。ポアッソン比を求めよ。

・棒の断面は単位面積(d=1)と仮定します。
・△V=V-V’
  V=L×A=L
  V'=(L+△L)×(d-△d)^2
   =(L+△L)×(1-2△d)・・△d^2は微小量でカットした
   =L-2L△d+△L ・・2△L△dは微少量でカット
 △V=2L(△d-△L/L)=2L(ε’-ε)
   =2εL(-ν-1) ・・(1)(2)を使う
   =-2PL(ν+1)/E ・・(8)を使う
これから
 ν=-(E△V/2PL+1)
となったが間違っているかもしれません(←その可能性大)。ご自分で計算してみてください。

普通の材料力学のテキストに載っているような問題ですが、テキストを読むよりここでの回答の方がよく理解できた(?)ということもままありますから(←以下の回答がそれに該当するかどうかはまったく別)、蛇足ながら知識の整理をと回答のヒントを書いておきます。
●ポアソン比・・・縦と横の歪みの比
長さL0、直径d0の丸棒(あるいは横幅d0の角棒)を引っ張っると棒は引っ張り方向に△lだけ伸びて長さがLになり、幅は△dだけ縮んでdになったとします。このとき単位あたりの伸びあるいは縮みを”ひずみ”と呼ん...続きを読む

Q比熱比

定圧比熱と定積比熱の比である比熱比の値は自由度でかわってくるそうですが、比熱比の物理的意味とはなんなのですか?
比熱比が大きい場合と小さいばあいではどのような異なった特徴があるのでしょうか?
質問の意味がわかりずらくすいません。

Aベストアンサー

 物理的な意味ではないですが、気体の物性的パラメーターの一つであるポアソン比νに等しいという関係もあります。
 比熱比の理論が知られる以前には気体の性質を把握するパラメーターとしては圧縮率kが使用されていた。定義は
断熱変化における圧力と体積の比例係数k1
k1dp=-dV/V
等温変化における圧力と体積の比例係数k2
k2dp=-dV/V
種々の気体において実験をした結果、k1とk2の比がいくつかの一定値に集まる事が知られてポアソン比と呼ばれた。

 同じ事を状態方程式pV=RTと比熱比によって検証すれば
断熱変化pV^γ=一定よりdV/dp=-V/(γp)、式を比較して
k1=1/(γp)
等温変化pV=RT=一定よりdV/dp=-V/p、式を比較して
k2=1/p
従って、k2/k1=γすなわちポアソン比とは比熱比のことであった。

Q片持ち梁の固有振動数

片持ち梁の振動を利用した実験を行いたいのですが,固有振動数の計算方法に関して不明な点があります.

まず,単純な片持ち梁の固有振動数については下記の式で算出できると思います.

f=(λ/2πL)√(Eg/γ) [Hz]

ただし,
・λ:境界条件,振動モードによって決まる係数
・L:梁の長さ
・E:ヤング率
・γ:梁の単位体積あたりの重さ

さらにこの片持ち梁の先端に質量Wの物体を付加した場合の系の固有振動数の計算方法がわかりません.

実際に実験を行い,固有振動数は計測できているのですが,計算によって理論的に予測したいので,よろしくお願いします.

Aベストアンサー

 「梁の質量を考慮した」単純な片持ち梁の場合、レーリー法を使って「梁の質量を無視した」片持ち梁の先端に等価質量33/144m(m:梁全体の質量)が付加されている状態とみなせます(この計算は機械振動学の本に載っていると思います)。
 さらにこの片持ち梁の先端に質量Wの物体を付加した場合は等価質量にWを足して最終的な固有振動数は計算すればいいと思います。
 ちなみに「梁の質量を無視した」片持ち梁の先端に質量mを付加した系の固有振動数はf=(1/2π)√(3EI/ml^3)です(I:弾性二次モーメント,l:梁の長さ)。

Q静温・全温について

静温と全温についてご存知の方おりましたら、感覚的に分かるよう、教えて頂けますでしょうか?


これまで調べた結果は以下の通りですが、理解しきれておりません。

(1) 静圧+動圧=全圧 >>全圧を温度で表したものが全温
 (静圧、動圧、全圧については感覚的に理解できます。)


(2) Cp*T0 = Cp*T + u/2
    ここでCp:比熱
       u : 流速
       T0 : 全温
       T : 静温
  (流速が関係しているが、温度と流速にどのような関係が・・・イメージ掴めません。。)


以上、よろしくお願いします。

Aベストアンサー

エネルギー保存の関係です。流れの持つ運動エネルギーが熱エネルギーに全て変換された場合の温度が全温になります。

(2)式のCp*Tは流体の持つ熱エネルギーに対応し、u^2/2は流れの持つ運動エネルギーに対応します。流れをせき止めようとする、すなわち、流れの速度を落として運動エネルギーを減らすと、その分だけ熱エネルギーが増えます。つまり温度が上昇します。これを流れが止まるまで行った際の流体の温度がT0になります。

力学的エネルギー保存則で考えてもいいかも知れません。次の式

  gh0=gh+1/2*u^2

は、高さhで速度uを持つ物体が、どこまで上れるか(h0)を表しています。ここで、高さを温度と読み変えれば、静温と全温の関係になります。