ママのスキンケアのお悩みにおすすめアイテム

電子の速度の計算の仕方をおしえてください!
自分なりに調べてわかったことは、1eVの電子速度は、5.9308*10^5(m/s)だということです。これを使うんですか?
知りたいのは、10eV以上での電子速度なんですが。。。

A 回答 (2件)

自由電子の速度ということらしいですね.


電子質量を m,速度を v として,運動エネルギーは (1/2)mv^2 です.
これが E [ev] に等しい.
1 [ev] = 1.602×10^(-19) [J] です.J はジュール.
したがって,
(1/2)mv^2 = 1.60218×10^(-19) E

m = 9.1094×10^(-31) [kg]
とから
v = 5.931×10^(5) √E [m/s]
です.
ただし,相対論的効果は入っていません.
    • good
    • 0
この回答へのお礼

ありがとうございました。解決しました。

お礼日時:2001/12/13 10:55

高校の物理の教科書の公式を使えば解けるような気がします。

    • good
    • 1
この回答へのお礼

ありがとうございます。

お礼日時:2001/12/13 10:56

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q波長(nm)をエネルギー(ev)に変換する式は?

波長(nm)をエネルギー(ev)に変換する式を知っていたら是非とも教えて欲しいのですが。
どうぞよろしくお願いいたします。

Aベストアンサー

No1 の回答の式より
 E = hc/λ[J]
   = hc/eλ[eV]
となります。
波長が nm 単位なら E = hc×10^9/eλ です。
あとは、
 h = 6.626*10^-34[J・s]
 e = 1.602*10^-19[C]
 c = 2.998*10^8[m/s]
などの値より、
 E≒1240/λ[eV]
となります。

>例えば540nmでは2.33eVになると論文には書いてあるのですが
>合っているのでしょうか?
λに 540[nm] を代入すると
 E = 1240/540 = 2.30[eV]
でちょっとずれてます。
式はあっているはずです。

Q電子のエネルギーについて

プランク等が光子のエネルギー、運動量を
E = hν, p = h / λ
として表現できると仮定しています。

一方、光のエネルギーは相対論からすると、
E = mc^2
になると考えられるので、光の運動量は
E = mc^2 = hν
とすると、
p = mv = mc = hν / c = h / λ
となると考えることができます。

ところが、ド・ブロイ等はこれが電子にも当てはまると言っています。
E = hν, p = h / λ

1. ここで言う、電子のエネルギーとは何でしょうか、これには質量によるエネルギーは含まれているのでしょうか?(シュレディンガー方程式を見る限りは運動エネルギー+ポテンシャルのようにも思えますが・・・)

2. 電子は光速で飛び回っているわけではないので、
p = mv = mc = hν / c = h / λ
は満たしません。にもかかわらず、ド・ブロイはなぜこの式を適用することができると考えたのでしょうか?

( i)ポテンシャルが存在せず、Eを運動エネルギーと考えた場合・・・
E = hν = 1/2 mv^2
従って、
p = h / λ = hν / v = 1/2 mv ??
これは運動量の定義と矛盾します。

(ii)ポテンシャルが存在せず、Eを運動エネルギー+静止エネルギーと考えた場合(電子の速度は光速に比べて十分遅いので)・・・
E = mc^2 + 1/2 mv^2 ~ mc^2 = hν
従って、
p = h / λ = hν / v = mc^2 / v ??
これも運動量の定義と矛盾します。

つまり、電子のように遅い粒子では、E = hν と p = h / λを同時に満たすことができないように思えるのです。

数多くある量子力学の本でも逃げている部分であり、難解な質問かとは思いますが、ご存知の方がいらっしゃればご回答お願いします。

プランク等が光子のエネルギー、運動量を
E = hν, p = h / λ
として表現できると仮定しています。

一方、光のエネルギーは相対論からすると、
E = mc^2
になると考えられるので、光の運動量は
E = mc^2 = hν
とすると、
p = mv = mc = hν / c = h / λ
となると考えることができます。

ところが、ド・ブロイ等はこれが電子にも当てはまると言っています。
E = hν, p = h / λ

1. ここで言う、電子のエネルギーとは何でしょうか、これには質量によるエネルギーは含まれているのでしょうか?(シュレ...続きを読む

Aベストアンサー

 波長λと振動数νを掛けたものは位相速度といわれますが、電子の位相速度は、実際の電子の移動速度vとは異なります。つまり、λν=v ではありません。それでは位相速度はどれくらいかというと、それは、E=mc^2=hν と p=mv=h/λ を使って求められます。計算しますと、λν=c^2/v となります。 この値は明らかに光速度cより大きく、相対性理論と合わないように思われますが、位相速度は観測できる量ではなく、物理的に意味がないので、相対性理論とは矛盾しません。
 電子を波と考えたときの現実的な波の速さは、群速度により表されます。群速度Vgは、角速度ωを波数ベクトルの大きさkで微分したものです。つまり、Vg=dω/dk となります。エネルギーと運動量は、ωとkを使うと、E=h'ω、p=h'k となりますから(h'=h/2π)、Vg=dE/dp となります。非相対性理論の範囲では、E=p^2/2m ですから、Vg=vとなります。相対性理論の範囲では、E^2=p^2c^2+m^2c^4ですから、これもVg=vとなります。

 それでは、質問者様の質問に回答します。
1. ここで言う、電子のエネルギーとは何でしょうか、これには質量によるエネルギーは含まれているのでしょうか?(シュレディンガー方程式を見る限りは運動エネルギー+ポテンシャルのようにも思えますが・・・)

 電子のエネルギーは、静止質量エネルギーを含んだものです。シュレーディンガー方程式のエネルギーは、ご指摘のとおり、静止質量エネルギーは含んでおりません。このため、相対論的量子力学で扱うエネルギーとシュレーディンガー方程式で扱うエネルギーとでは、静止質量エネルギーの分だけ違いがあるということになります。これは(ディラックによれば)、物理的に影響のない項目です。なぜなら、ハミルトニアンは、実の定数分の不定さがあるからです。

2. 電子は光速で飛び回っているわけではないので、
p = mv = mc = hν / c = h / λ
は満たしません。にもかかわらず、ド・ブロイはなぜこの式を適用することができると考えたのでしょうか?
 
 既に上で述べたように、λν=v ではなく、E=hν と p=h/λから位相速度が決まります。ド・ブロイはなぜこの式を適用することができると考えたのか、については、ド・ブロイ自身の論文は見ていませんが、ディラックによれば、相対論的に不変な性質から出発してこの考えに至ったようです。つまり、エネルギーと運動量は4次元ベクトル(E/c,p1,p2,p3)を成します。波数ベクトルについても、(ω/c,k1,k2,k3)は4次元ベクトルとなります。どちらも4次元ベクトルであることから、エネルギー運動量を波で表すということは、光だけに限定されるものではなく、ほかの物質であっても成り立つものと考えた訳です。

 波長λと振動数νを掛けたものは位相速度といわれますが、電子の位相速度は、実際の電子の移動速度vとは異なります。つまり、λν=v ではありません。それでは位相速度はどれくらいかというと、それは、E=mc^2=hν と p=mv=h/λ を使って求められます。計算しますと、λν=c^2/v となります。 この値は明らかに光速度cより大きく、相対性理論と合わないように思われますが、位相速度は観測できる量ではなく、物理的に意味がないので、相対性理論とは矛盾しません。
 電子を波と考えたときの現実的な波の速さは、群速度...続きを読む

Qミラー指数:面間隔bを求める公式について

隣接する2つの原子面の面間隔dは、ミラー指数hklと格子定数の関数である。立方晶の対称性をもつ結晶では

d=a/√(h^2 + k^2 + l^2) ・・・(1)

となる。

質問:「(1)式を証明せよ」と言われたのですが、どうすれば言いかわかりません。やり方を教えてもらえませんか_| ̄|○

Aベストアンサー

「格子定数」「ミラー指数」などと出てくると構えてしまいますが、この問題の本質は3次元空間での簡単な幾何であり、高校生の数学の範囲で解くことができます。

固体物理の本では大抵、ミラー指数を「ある面が結晶のx軸、y軸、z軸を切る点の座標を(a/h, b/k, c/l)とし、(h, k, l)の組をミラー指数という(*1)」といった具合に説明しています。なぜわざわざ逆数にするの?という辺りから話がこんがらがることがしばしばです。
大雑把に言えばミラー指数は法線ベクトルのようなものです。特に立方晶であれば法線ベクトルと全く同じになります。すなわち立方晶の(111)面の法線ベクトルは(1,1,1)ですし、(100)面の法線ベクトルは(1,0,0)です。法線ベクトルなら「ミラー指数」よりずっと親しみがあり解けそうな気分になると思います。

さて(hkl)面に相当する平面の方程式を一つ考えてみましょう。一番簡単なものとして
hx + ky + lz=0  (1)
があります。(0,0,0)を通る平面で法線ベクトルは(h,k,l)です。
これに平行な、隣の平面の式はどうでしょうか。
hx + ky + lz = a  (2a)
hx + ky + lz = -a  (2b)
のいずれかです。これがすぐ隣の平面である理由(そのまた間に他の平面が存在しない理由)は脚注*2に補足しておきました。
点と直線の距離の公式を使えば、題意の面間隔dは原点(0,0,0)と平面(2a)の間隔としてすぐに
d=a/√(h^2+k^2+l^2)  (3)
と求められます。

点と直線の距離の公式を使わなくとも、次のようにすれば求められます。
原点Oから法線ベクトル(h,k,l)の方向に進み、平面(2a)とぶつかった点をA(p,q,r)とします。
OAは法線ベクトルに平行ですから、新たなパラメータtを用いて
p=ht, q=kt, r=lt  (4)
の関係があります。
Aは平面(2a)上の点でもありますから、(4)を(2a)に代入すると
t(h^2+k^2+l^2)=a
t=a/(h^2+k^2+l^2)  (5)
を得ます。
ここにOAの長さは√(p^2+q^2+r^2)=|t|√(h^2+k^2+l^2)なので、これを(5)に代入して
|a|/√(h^2+k^2+l^2)  (6)
を得ます。OAの長さは面間隔dにほかならないので、(3)式が得られたことになります。

bokoboko777さん、これでいかがでしょうか。

*1 (h, k, l)の組が共通因数を持つ場合には、共通因数で割り互いに素になるようにします。例えば(111)面とは言いますが(222)面なる表現は使いません。
*2 左辺はhx+ky+lzでよいとして、なぜ右辺がaまたは-aと決まるのか(0.37aや5aにならないのは何故か)は以下のように説明されます。
平面をhx+ky+lz = C (Cはある定数)と置きます。この平面は少なくとも一つの格子点を通過する必要があります。その点を(x0,y0,z0)とします。
h,k,lはミラー指数の定義から整数です。またx0,y0,z0はいずれもaの整数倍である必要があります(∵格子点だから)。すると右辺のCも少なくともaの整数倍でなければなりません。
次に右辺の最小値ですが、最小の正整数は1ですから平面hx + ky + lz = aが格子点を通るかどうかを調べ、これが通るなら隣の平面はhx + ky + lz = aであると言えます。このことは次の命題と等価です。
<命題>p,qが互いに素な整数である場合、pm+qn=1を満たす整数の組(m,n)が少なくとも一つ存在する
<証明>p,qは正かつp>qと仮定して一般性を失わない。
p, 2p, 3p,...,(q-1)pをqで順に割った際の余りを考えてみる。
pをqで割った際の余りをr[1](整数)とする。同様に2pで割った際の余りをr[2]・・・とする。
これらの余りの集合{r[n]}(1≦n≦(q-1))からは、どの二つを選んで差をとってもそれはqの倍数とは成り得ない(もし倍数となるのならpとqが互いに素である条件に反する)。よって{r[n]}の要素はすべて異なる数である。ところで{r[n]}は互いに異なる(q-1)個の要素から成りかつ要素は(q-1)以下の正整数という条件があるので、その中に必ず1が含まれる。よって命題は成り立つ。

これから隣の平面はhx + ky + lz = aであると証明できます。ただここまで詳しく説明する必要はないでしょう。証明抜きで単に「隣の平面はhx + ky + lz = aである」と書くだけでよいと思います。

参考ページ:
ミラー指数を図なしで説明してしまいましたが、図が必要でしたら例えば
http://133.1.207.21/education/materdesign/
をどうぞ。「講義資料」から「テキスト 第3章」をダウンロードして読んでみてください。(pdfファイルです)

参考URL:http://133.1.207.21/education/materdesign/

「格子定数」「ミラー指数」などと出てくると構えてしまいますが、この問題の本質は3次元空間での簡単な幾何であり、高校生の数学の範囲で解くことができます。

固体物理の本では大抵、ミラー指数を「ある面が結晶のx軸、y軸、z軸を切る点の座標を(a/h, b/k, c/l)とし、(h, k, l)の組をミラー指数という(*1)」といった具合に説明しています。なぜわざわざ逆数にするの?という辺りから話がこんがらがることがしばしばです。
大雑把に言えばミラー指数は法線ベクトルのようなものです。特に立方晶であれば法線ベ...続きを読む

Qe^-2xの積分

e^-2xの積分はどうしたらよいのでしょうか…。e^xやe^2xsinxなどはのってるのですがこれが見つかりません。お願いします。

Aベストアンサー

いささか、思い違いのようです。

e^-2x は、 t=-2x と置いて置換してもよいけれど、牛刀の感がします。

e^-2x を微分すると、(-2)*( e^-2x )となるので、

e^-2x の積分は、(-1/2)*( e^-2x )と判明します。

Q相対性理論-質量と速度の関係-

他のQ&Aも参照したのですが、直接的な解答が得られなかったので質問させてください。

エネルギーと質量、速度の関係なんですが・・
例えば、600MeVのエネルギーを持つ電子が存在したとして、これを速度に換算するといくらになるのでしょうか・・?

量子力学の概念が必要となってくるのは、分かるんですが、質量は速度と共に増加しますよね?速度が分かれば量子力学的な質量も算出できるのですが、速度が分からない状態で、質量及び速度を算出する事ができるのでしょうか?

v= の式があればありがたいんですが、何冊か調べたんですがのってなくて・・。私は浅学非才な者で申し訳ないんですが、教えて頂ければ嬉しいです。

Aベストアンサー

 E = mc^2/√(1-(v/c)^2)
を変形すると
 v = (c/E) √(E^2 - m^2c^4)
電子の場合はmc^2≒0.5MeV、E=600MeVを代入すると
 v ≒ 0.9999996c
量子力学はどこにも使っていないと思います。

Q金属内の自由電子1個の速度はどの程度でしょうか?

 今晩は、質問させていただきます。どうぞよろしくお願いいたします。

 金属内の「ある1つの自由電子」の速度はどの程度なのでございましょうか?
ネット上を調べておりますと、
>金属電子全体の「平均速度」は非常に遅く~

>電流を流した際の速度計算方法は~
といったものは出てくるのでございますが、
常温の金属原子群間を飛び回っているであろう1つの自由電子が、どの程度の速度で移動しているのか、という情報が出てまいりません。。。


 金属の種類で異なるのでございましょうか?大体のオーダーでも分かれば嬉しいのでございますが、もし参考になりそうな本やサイトがございましたら、そちらをご紹介いただけるのでも十分でございます。
 お詳しい方がいらっしゃいましたら,何卒よろしくお願いいたします。

Aベストアンサー

 絶対温度に比例して金属内の自由電子は速度を持ちます。それが熱の一部となっていますし、金属が熱を伝えやすい理由の一つでもあります。

 計算は省略しますが(知りたい場合は、根平均二乗速度、などで検索してみてください)、セ氏25度で、秒速1.2×10の5乗m(秒速12万m、秒速120km、時速43万km、地表でのマッハ4300)くらいになります。

Q電子軌道半径の求め方

ボーアの原子模型を利用して水素の電子軌道半径を求めたいのですが、
どのようにすればうまく求められるでしょうか?
よろしくお願いします

Aベストアンサー

http://oshiete1.goo.ne.jp/kotaeru.php3?q=36150
の私の回答No.3をご覧下さい.

Q50ボルトの電位差で加速された電子の波長と速度

1ボルトで加速された電子の運動エネルギーを1eVという。
このときの電子1モルのエネルギーは96.5kJ/molである。
50ボルトの電位差で加速された電子の物質波の波長(nm)と速度(m/s)を求めよ。

という問題で、このような問題解くの初めてで意味わからなかったので、

1eVについて調べたら、

『1eVとは、1Vの電位差のある場所で電子1個が得るエネルギーのこと』

とあったので、

『』内のエネルギーをXと置いて、

電子6.02×10^23個(=1mol):96.5×10^3J=電子1個:X(J)

∴X=1.60299×10^-19(J)

50電位差のときは、電子1個が得るエネルギーは50eVなので、
1.60299×10^-19(J)×50=8.01495×10^-18(J)

E(J)=h(Js)ν(s^-1)より、
1.60299×10^-19(J)=6.63×10^-34(Js)×ν
∴ν=1.208891×10^-16(s^-1)

E(m^2・kg/s^2)=m(kg)c^2より、
8.01495×10^-18(J)=m×(3.00×10^8)^2
∴m=8.9054×10^-35(kg)

λ=c/νより、
λ=3.00×10^8/1.208891×10^-16=2.48161×10^24(m)(=2.48161×10^33nm…波長の答え)

ドブロイの式
λ=h/{m(kg)×v(m/s)}
より、

v=1.847539×10^25(m/s)…速度の答え

と解いてみたのですが、

やけに答え大きすぎるし、
基本的な問題なのにどこが間違っているのかがわかりません。

ご指摘お願いいたします。

1ボルトで加速された電子の運動エネルギーを1eVという。
このときの電子1モルのエネルギーは96.5kJ/molである。
50ボルトの電位差で加速された電子の物質波の波長(nm)と速度(m/s)を求めよ。

という問題で、このような問題解くの初めてで意味わからなかったので、

1eVについて調べたら、

『1eVとは、1Vの電位差のある場所で電子1個が得るエネルギーのこと』

とあったので、

『』内のエネルギーをXと置いて、

電子6.02×10^23個(=1mol):96.5×10^3J=電子1個:X(J)

∴X=1.6...続きを読む

Aベストアンサー

>E=mv^2/2
で速度出して
ドブロイで
波長出しても
いいんですか?

全然問題ないです。ただ、

>私はまだE=p^2/2m見たことない(習ってない?w)気がするので

きっとこの式の意味をまだ把握されていないかと実はこれE=(1/2)mv^2と意味は全く同じです。
まず
運動量p=mv
運動エネルギーE=(1/2)mv^2

ってことは
p^2=(mv)^2
(1/2m)p^2=(1/2)mv^2
となります。つまり(1/2m)p^2も運動エネルギーを表しているわけです。

よって
E=mv^2/2=p^2/2m
となるのです。

Q計算値と理論値の誤差について

交流回路の実験をする前に、ある回路のインピーダンスZ(理論値)を計算で求めたあと、実験をしたあとの測定値を利用して、同じ所のインピーダンスZ(計算値)を求めると理論値と計算値の間で誤差が生じました。
そこでふと思ったのですが、なぜ理論値と計算値の間で誤差が生じるのでしょうか?また、その誤差を無くすことはできるのでしょうか? できるのなら、その方法を教えてください。
あと、その誤差が原因で何か困る事はあるのでしょうか?
教えてください。

Aベストアンサー

LCRのカタログ値に内部損失や許容誤差がありますが、この誤差は
1.Rの抵抗値は±5%、±10%、±20% があり、高精度は±1%、±2%もあります。
2.Cの容量誤差は±20% 、+50%・ー20% などがあり
3.Lもインダクタンス誤差は±20%で、
3.C・Rは理想的なC・Rでは無く、CにL分、Lに抵抗分の損失に繋がる成分があります。
これらの損失に繋がる成分は、試験周波数が高くなると、周波数依存で増大します。
また、周囲温度やLCRの素子自身で発生する自己発熱で特性が変化します。
測定器や測定系にも誤差が発生する要因もあります。
理論値に対する測定値が±5%程度発生するのは常で、実際に問題にならないように、
LCRの配分を工夫すると誤差やバラツキを少なく出来ます。
 

Q原子の中の原子核と電子

原子は、原子核と電子から構成されていますね。それらは、プラスとマイナスの電荷を持っていますね。それなのに何故、原子核と電子は衝突してしまわないのでしょう。素粒子の実験では、加速器という装置を使って、素粒子同士をぶつけることができるそうですが、このような衝突が何故、原子の中で起こらないのでしょうか。みなさん、よろしくお願いします。

Aベストアンサー

stomachman さんの言われるように,20世紀初頭の大難問でした.

1911 年にラザフォードが原子核+電子という模型を提出して以来,
1913 年のボーアの量子仮設などを経て,1926 年にシュレーディンガーが
水素原子のシュレーディンガー方程式の解を示したのが最終解決ですね.
3人ともノーベル賞を受けています.
ラザフォード・・・・・・・・1908年,ノーベル化学賞
ボーア・・・・・・・・・・・1922年,ノーベル物理学賞
シュレーディンガー・・・・・1933年,ノーベル物理学賞

○ 前期量子論風に簡単にやってみましょう.
電子が陽子の周囲を半径 a の円軌道で回っているとして
(本当は回っているわけではないが...)
陽子-電子間のクーロン引力が e^2/a^2
(4πε0 がついていないのは cgs 非有理化単位系を使っているから)
遠心力が maω^2 (ωは回転の角速度),
両者が釣り合うから
(1)   e^2/a^2 = maω^2
速度は v = aω で,運動量 p は
(2)   p = mv = maω
stomachman さんの言われる電子波の波長λは,
ド・ブロイ(これも1929年のノーベル物理学賞)の関係式(1924年)で
(3)   λ = h/p
h はプランク定数.
円軌道一周が 2πa の長さですから,これが波長λの整数倍でないと
一周したときに波の頭としっぽがずれてしまう.
(4)   2πa = nλ  (n は自然数)
で,(1)~(4)から,簡単に
(5)   a_n = n^2 h^2 / 4π^2 m e^2
で,円軌道の半径が h^2 / 4π^2 m e^2 の n^2 倍しかとれない,
というようになっているのがわかります.
n = 0 では電子波がなくなっちゃいます.
エネルギー E_n は,運動エネルギー mv^2 = ma^2 ω^2 と,
クーロン力のポテンシャルエネルギー -e^2/a (負号は引力だから)の和で,
(6)   E_n = - 2π^2 e^4 m / n^2 h^2
で,これも離散的な値を取ります.
stomachman さんの E = mc^2 は何か誤解されているようですね.
エネルギーが E_n で量子化されていますから,
状態間を移るためにはそのエネルギー差の出し入れが必要なです.
それが電磁波のエネルギー hν になっているので,
吸収や放出する電磁波の波長は特定のものしかあり得ません.
ここらへんは stomachman さんの言われるとおり.

○ 上の前期量子論風の話は,きちんとした量子力学の定式化の話からすると
まずいところがあれこれあります.

○ ド・ブロイの波長の話は大分後の話で,前期量子論では作用積分の量子化
という議論になっていました.

○ もうちょっと簡単に言うなら,
電子が陽子の場所に落ち込んで動かなくなってしまうと,
場所が決まり運動量も決まってしまうので,
ハイゼンベルクの不確定性原理に違反する,という言い方も出来ます.

○ エネルギーが離散的な値を取るのは束縛状態(E < 0)だけで,
非束縛状態(散乱状態)の E > 0 では,エネルギーが連続的な値をとります.
量子力学では何でもエネルギーが離散的というわけではありません.
よく誤解されるようですが,量子力学という名前が悪いのかな?
加速器で陽子を原子核に打ち込むような話では,
陽子のエネルギーは連続的に取り得ます.

○ 加速器でよく使われるのは,
陽子や重陽子(重水素の原子核,陽子1個+中性子1個)や
α粒子(ヘリウム4の原子核,陽子2個+中性子2個)を
標的の原子核に打ち込むというものです.
標的がうまく取り込んでくれれば,原子番号が1か2大きい原子核ができます.
超ウラン元素のはじめの方はこのようなやり方で作られました.
後の方の元素はクロムイオンを鉛原子核にぶつけるなど,しています.
陽子も原子核も正電荷を持っていますから,クーロン反発力があります.
十分距離が近づけば核力の引力が作用しますが,そこまでクーロン反発力に逆らって
近づけるために加速器で加速するのです.

stomachman さんの言われるように,20世紀初頭の大難問でした.

1911 年にラザフォードが原子核+電子という模型を提出して以来,
1913 年のボーアの量子仮設などを経て,1926 年にシュレーディンガーが
水素原子のシュレーディンガー方程式の解を示したのが最終解決ですね.
3人ともノーベル賞を受けています.
ラザフォード・・・・・・・・1908年,ノーベル化学賞
ボーア・・・・・・・・・・・1922年,ノーベル物理学賞
シュレーディンガー・・・・・1933年,ノーベル物理学賞

○ 前期量子論風...続きを読む


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング