航空官制用のレーダー整備に従事しているものです。
信号処理の機能の一つに雲の中に入った航空機を雲の信号のみ消して航空機の信号のみ取り出すというのがあります。その原理として雲からの信号はレイリー分布をしているので消すことが可能であるということが取扱説明書に書いてありました。
レイリー分布について可能な限り調べましたがわかりやすい記述がしてあるものが見つかりません。どなたかレイリー分布についておしえていただけないでしょうか?
よろしくお願いします。

A 回答 (2件)

 レーダについてはわからないのですが、電波伝搬路におけるフェイジングにおいてレイリー分布のお世話になっています。


 受信信号の振幅がRとなる確率p(R)が、
  p(R)=(R/σ^2)exp[-R^2/2σ^2]
となるとき、この確率密度関数をレイリー分布と呼ぶのはもう既に調べられたと思います。σ^2は平均受信電力です。定義はこれだけなのですが、ちょっと視点を変えてみます。
 見通し外通信における伝搬路をシミュレーションでモデル化する場合、振幅変動と位相変動をランダムに与えた複数波の合成で受信信号を作成しますが、この受信信号の振幅がちゃんとレイリー分布に従います。これは見通し外通信における伝搬路を、レベルがほぼ等しい多くの散乱波の合成によってモデル化したものと考えられます。
 一方、レーダでは雲の中の雨滴に当たって散乱した電波を受信するのだと思いますが、雨滴はレーダの波長より十分小さいので、その散乱波は「レベルがほぼ等しい多くの散乱波」になっていると思います。ですから、これを受信するとレイリー分布になっているということだと思います。
 レイリー分布とは何かという質問からは少しはずれた回答ですがご参考になれば。
    • good
    • 1
この回答へのお礼

大変分かりやすい解説をしていただき誠にありがとうございます。レイリー分布についてだいぶわかりかけてきました。特に、

雨滴はレーダの波長より十分小さいので、その散乱波は「レベルがほぼ等しい多くの散乱波」になっていると思います。ですから、これを受信するとレイリー分布になっているということだと思います。

というところは特に分かりやすかったです。
これからもいろいろと知識を吸収して学問の楽しさを追求していきたいと思います。
本当にありがとうございました。

お礼日時:2000/12/16 22:14

手抜きですが:


「雲の中に入った航空機を雲の信号のみ消して航空機の信号のみ取り出す」という技術において、「レイリー分布」が何であるか、は取りあえず本質的ではありません。
雲に反射した信号はある予想される性質を持つ。その性質から外れるような信号が飛行機だ、ということです。
時間tに関して、反射波の複素波形をf(t)とするとき、そりゃ雲によって強い信号だったり弱かったり、f(t)の山が広かったり狭かったりするでしょうが、少数個のパラメータを含む数式でf(t)を近似できるものとします。(その数式がモデルですね。)
観測した波形f(t)にモデルを当て嵌めて、数式のパラメータを調節します。それでもモデルとf(t)との間に違いが残る。その残ったところが飛行機だろう。そして、この場合はモデルが「レイリー分布」と何か関係ある、ということでしょう。
 いーかげんですいません。
    • good
    • 0
この回答へのお礼

とても分かりやすい解説ありがとうございます。レイリー分布についてだいぶ理解が深まりました。特に

観測した波形f(t)にモデルを当て嵌めて、数式のパラメータを調節します。それでもモデルとf(t)との間に違いが残る。その残ったところが飛行機だろう。そして、この場合はモデルが「レイリー分布」と何か関係ある、

のところは理解する上でとても参考になりました。

これからも精進して、レーダー技術を究めたいと思います。本当にありがとうございました。

お礼日時:2000/12/16 22:25

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人はこんなQ&Aも見ています

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Qガウスノイズについて

ガウスノイズについて教えてください!
実験などでデータにノイズを付加する際に、
ガウスノイズを加えることが多いようですが。

ガウスノイズとはそもそも何なのでしょうか?
予想ではノイズの発生頻度が正規分布であることではないかと思うのですが・・・
付加するノイズの値はどのように決めているのでしょうか?

ご存知の方教えてください。<(_ _)>

Aベストアンサー

ガウスノイズは、おっしゃるとおり、ノイズが入っていないときの値を平均として、適当な分散の正規分布にしたがうノイズのことです。

ノイズの値は、実験の際に信号をノイズ除去プログラムで除去できそうな大きさのノイズであったり、実際の環境で想定される大きさのものに設定すると思います。

Q画像における雑音の評価について教えてください

MRIによる画像取得の際に生じるその雑音評価で何が正しいのか分からなくなっています。
ある文献では、十分なS/N比が得られるとき、その雑音値の分布(ヒストグラムの意味?)はガウス分布に準じるとあり、また、別の文献では、平均値0のレイリー分布になるとあります。
いろいろと考えてみると、実数表示における雑音は、ガウス分布に準じ、絶対値表示における雑音はレイリー分布に準じると言う理解なのかな?と思っているのですが、それだと、レイリー分布で平均値が0というのは矛盾するので、困ってしまいます。
この辺の解釈について、どなたか教えていただけると助かります。
よろしくお願いします。

Aベストアンサー

MRIの画像もいろいろありますが、古典的な絶対値画像の場合ですよね?

平均値ゼロのレイリー分布というのは変です。雑音分布が平均値ゼロのレイリー分布に従うなら、その標準偏差もゼロですから。

「ヒストグラムの意味?」というのはそのとおりです。

「実数表示における雑音は、ガウス分布に準じ、絶対値表示における雑音はレイリー分布に準じると言う理解なのかな?」というのは、かなり良い線を行っています。
MRI画像は本来元データとしては複素数画像なので、その実数部だけあるいは虚数部だけとれば雑音はガウス分布です。そういう複素数画像を絶対値化したのが普通のMRI画像なわけですが、この絶対値化のために、ガウス分布のままとなったり、レイリー分布となったりします。

つまり、絶対値画像においてある場所Aでは雑音はガウシアンであり、また別の場所Bではレイリー分布です。
Aは被写体による信号が存在する場所であり、その信号レベル(画像値レベル)は雑音振幅よりも十分に大きな場所です。この場所での信号に重畳した雑音こそが我々が問題視する雑音です。
BはMRI信号源が存在しない、例えば被写体外の空気の領域です。絶対値化する前の複素数雑音は実数部も虚数部も+-あり、ガウシアンです。ところが絶対値化する結果、雑音は正の値しかとりません。絶対値化の結果、ここでは雑音はレイリー分布に従います。もちろん平均値ゼロでも標準偏差ゼロでもありません。測りやすいので雑音はここで測る場合が多いようです。
もし場所Aで標準偏差が100なら、場所Bでは65.6くらいです。

このへんは次の論文が一番わかりやすいと思います。
Henkelman RM. Measurement of signal intensities in the presence of noise in MR images. Med Phys. 1985;12:232–233. Erratum in 13, 544 (1986).

信号レベルが雑音レベルとコンパラな場所では標準偏差は両者の中間程度です。ここの雑音は確かライシアン(Rician)分布という確率密度関数に従う、信号レベルの高いときのRicianの極限がGaussianであり、信号レベルの低いときのRicianの極限がRayleigh、ということだったと記憶します。(→参考URL)

参考URL:http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2254141

MRIの画像もいろいろありますが、古典的な絶対値画像の場合ですよね?

平均値ゼロのレイリー分布というのは変です。雑音分布が平均値ゼロのレイリー分布に従うなら、その標準偏差もゼロですから。

「ヒストグラムの意味?」というのはそのとおりです。

「実数表示における雑音は、ガウス分布に準じ、絶対値表示における雑音はレイリー分布に準じると言う理解なのかな?」というのは、かなり良い線を行っています。
MRI画像は本来元データとしては複素数画像なので、その実数部だけあるいは虚数部...続きを読む

Q統計学的に信頼できるサンプル数って?

統計の「と」の字も理解していない者ですが、
よく「統計学的に信頼できるサンプル数」っていいますよね。

あれって「この統計を調べたいときはこれぐらいのサンプル数があれば信頼できる」という決まりがあるものなのでしょうか?
また、その標本数はどのように算定され、どのような評価基準をもって客観的に信頼できると判断できるのでしょうか?
たとえば、99人の専門家が信頼できると言い、1人がまだこの数では信頼できないと言った場合は信頼できるサンプル数と言えるのでしょうか?

わかりやすく教えていただけると幸いです。

Aベストアンサー

> この統計を調べたいときはこれぐらいのサンプル数があれば信頼できる・・・
 調べたいどの集団でも、ある一定数以上なら信頼できるというような決まりはありません。
 何かサンプルを集め、それをなんかの傾向があるかどうかという仮説を検証するために統計学的検定を行って、仮設が否定されるかされないかを調べる中で、どの検定方法を使うかで、最低限必要なサンプル数というのはあります。また、集めたサンプルを何か基準とすべき別のサンプルと比べる検定して、基準のサンプルと統計上差を出すに必要なサンプル数は、比べる検定手法により計算できるものもあります。
 最低限必要なサンプル数ということでは、例えば、ある集団から、ある条件で抽出したサンプルと、条件付けをしないで抽出したサンプル(比べるための基準となるサンプル)を比較するときに、そのサンプルの分布が正規分布(正規分布解説:身長を5cmきざみでグループ分けし、低いグループから順に並べたときに、日本人男子の身長なら170cm前後のグループの人数が最も多く、それよりも高い人のグループと低い人のグループの人数は、170cmのグループから離れるほど人数が減ってくるような集団の分布様式)でない分布形態で、しかし分布の形は双方とも同じような場合「Wilcoxon符号順位検定」という検定手法で検定することができますが、この検定手法は、サンプルデータに同じ値を含まずに最低6つのサンプル数が必要になります。それ以下では、いくらデータに差があるように見えても検定で差を検出できません。
 また、統計上差を出すのに必要なサンプル数の例では、A国とB国のそれぞれの成人男子の身長サンプルがともに正規分布、または正規分布と仮定した場合に「t検定」という検定手法で検定することができますが、このときにはその分布を差がないのにあると間違える確率と、差があるのにないと間違える確率の許容値を自分で決めた上で、そのサンプルの分布の値のばらつき具合から、計算して求めることができます。ただし、その計算は、現実に集めたそれぞれのサンプル間で生じた平均値の差や分布のばらつき具合(分散値)、どのくらいの程度で判定を間違える可能性がどこまで許されるかなどの条件から、サンプル間で差があると認められるために必要なサンプル数ですから、まったく同じデータを集めた場合でない限り、計算上算出された(差を出すために)必要なサンプル数だけサンプルデータを集めれば、差があると判定されます(すなわち、サンプルを無制限に集めることができれば、だいたい差が出るという判定となる)。よって、集めるサンプルの種類により、計算上出された(差を出すために)必要なサンプル数が現実的に妥当なものか、そうでないのかを、最終的には人間が判断することになります。

 具体的に例示してみましょう。
 ある集団からランダムに集めたデータが15,12,18,12,22,13,21,12,17,15,19、もう一方のデータが22,21,25,24,24,18,18,26,21,27,25としましょう。一見すると後者のほうが値が大きく、前者と差があるように見えます。そこで、差を検定するために、t検定を行います。結果として計算上差があり、前者と後者は計算上差がないのにあると間違えて判断する可能性の許容値(有意確率)何%の確率で差があるといえます。常識的に考えても、これだけのサンプル数で差があると計算されたのだから、差があると判断しても差し支えないだろうと判断できます。
 ちなみにこの場合の差が出るための必要サンプル数は、有意確率5%、検出力0.8とした場合に5.7299、つまりそれぞれの集団で6つ以上サンプルを集めれば、差を出せるのです。一方、サンプルが、15,12,18,12,21,20,21,25,24,19の集団と、22,21125,24,24,15,12,18,12,22の集団ではどうでしょう。有意確率5%で差があるとはいえない結果になります。この場合に、このサンプルの分布様式で拾い出して差を出すために必要なサンプル数は551.33となり、552個もサンプルを抽出しないと差が出ないことになります。この計算上の必要サンプル数がこのくらい調査しないといけないものならば、必要サンプル数以上のサンプルを集めて調べなければなりませんし、これだけの数を集める必要がない、もしくは集めることが困難な場合は差があるとはいえないという判断をすることになるかと思います。

 一方、支持率調査や視聴率調査などの場合、比べるべき基準の対象がありません。その場合は、サンプル数が少ないレベルで予備調査を行い、さらにもう少しサンプル数を増やして予備調査を行いを何回か繰り返し、それぞれの調査でサンプルの分布形やその他検討するべき指数を計算し、これ以上集計をとってもデータのばらつきや変化が許容範囲(小数点何桁レベルの誤差)に納まるようなサンプル数を算出していると考えます。テレビ視聴率調査は関東では300件のサンプル数程度と聞いていますが、調査会社ではサンプルのとり方がなるべく関東在住の家庭構成と年齢層、性別などの割合が同じになるように、また、サンプルをとる地域の人口分布が同じ割合になるようにサンプル抽出条件を整えた上で、ランダムに抽出しているため、数千万人いる関東の本当の視聴率を割合反映して出しているそうです。これはすでに必要サンプル数の割り出し方がノウハウとして知られていますが、未知の調査項目では必要サンプル数を導き出すためには試行錯誤で適切と判断できる数をひたすら調査するしかないかと思います。

> どのような評価基準をもって客観的に信頼できると判断・・・
 例えば、工場で作られるネジの直径などは、まったくばらつきなくぴったり想定した直径のネジを作ることはきわめて困難です。多少の大きさのばらつきが生じてしまいます。1mm違っても規格外品となります。工場では企画外品をなるべく出さないように、統計を取って、ネジの直径のばらつき具合を調べ、製造工程をチェックして、不良品の出る確率を下げようとします。しかし、製品をすべて調べるわけにはいきません。そこで、調べるのに最低限必要なサンプル数を調査と計算を重ねてチェックしていきます。
 一方、農場で生産されたネギの直径は、1mmくらいの差ならほぼ同じロットとして扱われます。また、農産物は年や品種の違いにより生育に差が出やすく、そもそも規格はネジに比べて相当ばらつき具合の許容範囲が広くなっています。ネジに対してネギのような検査を行っていたのでは信頼性が損なわれます。
 そもそも、統計学的検定は客観的判断基準の一指針ではあっても絶対的な評価になりません。あくまでも最終的に判断するのは人間であって、それも、サンプルの質や検証する精度によって、必要サンプルは変わるのです。

 あと、お礼の欄にあった専門家:統計学者とありましたが、統計学者が指摘できるのはあくまでもそのサンプルに対して適切な検定を使って正しい計算を行ったかだけで、たとえ適切な検定手法で導き出された結果であっても、それが妥当か否か判断することは難しいと思います。そのサンプルが、何を示し、何を解き明かし、何に利用されるかで信頼度は変化するからです。
 ただ、経験則上指標的なものはあります。正規分布を示すサンプルなら、20~30のサンプル数があれば検定上差し支えない(それ以下でも問題ない場合もある)とか、正規分布でないサンプルは最低6~8のサンプル数が必要とか、厳密さを要求される調査であれば50くらいのサンプル数が必要であろうとかです。でも、あくまでも指標です。

> この統計を調べたいときはこれぐらいのサンプル数があれば信頼できる・・・
 調べたいどの集団でも、ある一定数以上なら信頼できるというような決まりはありません。
 何かサンプルを集め、それをなんかの傾向があるかどうかという仮説を検証するために統計学的検定を行って、仮設が否定されるかされないかを調べる中で、どの検定方法を使うかで、最低限必要なサンプル数というのはあります。また、集めたサンプルを何か基準とすべき別のサンプルと比べる検定して、基準のサンプルと統計上差を出すに必要な...続きを読む

Qホワイトノイズはガウス分布?

ホワイトノイズはガウス分布に従うというようなことがいろいろな文献に書かれているのですが、
これってどういうことなのでしょうか?
ホワイトノイズとは全周波数に渡って一様なノイズのはずです。
このノイズが平均値とか分散値をもつというのはどういうことなのでしょうか?

Aベストアンサー

#1です。
A#1の補足の質問の回答

> これはσ→∞のとき完全なホワイトノイズになると考えて良いのでしょうか?
もちろん一致します。でもσが無限大のガウスノイズは、現実には実現不可能です。

> この標準偏差が無限のときに、
狭い周波数帯では平坦に見えるということからホワイトノイズと呼ばれるという説明で合っていますでしょうか?
無限は思考的な理論の世界の表現で、現実には無限の周波数は作れませんし、その測定器も存在しません。もしσが無限大のガウス雑音が出来たとしたら、ホワイトノイズと区別できないでしょう(ガウスノイズはσ無限大の極限ではホワイトノイズは一致します)。

別に標準偏差が無限大でなくても、扱うスペクトルの周波数帯で平坦なスペクトル(と見えている)ならホワイトノイズとして扱って良い(見做して良い)でしょう。あくまでも擬似的なホワイトノイズであって、ホワイトノイズそのものではありません。
たとえば、音声などの可聴周波数帯(50Hz~20kHz位)の信号を扱う場合は標準偏差σが100kHz以上のガウス雑音を擬似的なホワイトノイズとして扱って良いでしょう。このσのガウス雑音のスペクトルの大きさ(振幅)は可聴周波数帯のf=0~20KHzの範囲ではほとんど平坦なので、σ=100kHzのガウス分布のガウス雑音は可聴周波数帯ではホワイトノイズの代用として使えるでしょう(この意味で擬似ホワイトノイズです)。同じホワイトノイズ発生器を、帯域100kHzの周波数計測器の雑音源としては全くホワイトノイズの役目をしません。あくまでガウスノイズに過ぎません。

フーリエ積分(変換)を学んで見えるなら、
振幅分布がガウス分布の信号(雑音)の周波数スペクトル(密度)はやはりガウス分布になります。

一方、振幅が無限大、幅ゼロのパルス(ディラックのデルタ関数δ(t))の)のフーリエ変換はフラットなスペクトルになります。しかし、現実には、振幅が無限大、幅ゼロのパルスは作れません。
デルタ関数と見做せる大きな振幅と幅の狭いパルスは作れます。これらのパルスを時間間隔を蜜に発生させた信号源(雑音源)が擬似的なホワイトノイズ発生器ということですね。

なお、真の意味のホワイトノイズ発生器は製作不能です。製作できてもそれがホワイトノイズ発生器であることを確認する測定器も作れないし存在しませんね。あくまで理念的な空想の産物ですね。

#1です。
A#1の補足の質問の回答

> これはσ→∞のとき完全なホワイトノイズになると考えて良いのでしょうか?
もちろん一致します。でもσが無限大のガウスノイズは、現実には実現不可能です。

> この標準偏差が無限のときに、
狭い周波数帯では平坦に見えるということからホワイトノイズと呼ばれるという説明で合っていますでしょうか?
無限は思考的な理論の世界の表現で、現実には無限の周波数は作れませんし、その測定器も存在しません。もしσが無限大のガウス雑音が出来たとしたら、ホワイトノイズと...続きを読む

Qパワースペクトル密度 エネルギースペクトル密度

信号のパワースペクトル密度とエネルギースペクトル密度とは何なんですか?調べてみましたがよく分かりません。
それぞれの違いや関係についても知っている方いらっしゃいましたら、どうか教えてください。
よろしくお願いします。

Aベストアンサー

原理的な話をします.
まず,時間波形x(t)の絶対値の2乗|x(t)|^2を全時間範囲(-無限大<t<無限大)に渡って積分したものは,その波形の全エネルギーです.
一方,|x(t)|の全時間範囲に渡る積分値が存在するのなら,x(t)はフーリエ変換可能ですが,そのx(t)のフーリエ変換X(f)の絶対値の2乗|X(f)|^2を全周波数範囲(-無限大<f<無限大)に渡って積分したものは,実はx(t)の全エネルギーになるという有名な定理(Parsevalの定理)があります.

ということは,このときの被積分関数|X(f)|^2は単位周波数あたりのエネルギーを表していることになるでしょ.これ(|X(f)|^2)がエネルギースペクトル密度と呼ばれるものです.

ところで,実世界の多くの波形(不規則波形など)は,無限の時間範囲に渡って存在するので,その全エネルギーは一般には無限大となり,上記のエネルギースペクトル密度は定義(計算)できません.

そこで,そのような波形に対しては,|X(f)|^2を全周波数範囲(-無限大<f<無限大)に渡って積分するだけではなく,その積分値の時間平均を考えます.すなわち被積分関数|X(f)|^2/2Tを時間範囲2T(-T<t<T)に渡って積分して,さらにTを無限大にした量を考えます.この量は,単位時間当たりのエネルギーを表しますから,パワーと呼ばれる単位を持ちます.これがパワースペクトル密度と呼ばれるものです.

衝撃波形などは,無限大の時間範囲に渡っては波形が存在しないので,エネルギースペクトル密度を求めることができます.一方不規則波形などは,上述のとおり,エネルギースペクトル密度を求めることはでなくて,代わりにパワースペクトルという量で議論する必要があります.

原理的な話をします.
まず,時間波形x(t)の絶対値の2乗|x(t)|^2を全時間範囲(-無限大<t<無限大)に渡って積分したものは,その波形の全エネルギーです.
一方,|x(t)|の全時間範囲に渡る積分値が存在するのなら,x(t)はフーリエ変換可能ですが,そのx(t)のフーリエ変換X(f)の絶対値の2乗|X(f)|^2を全周波数範囲(-無限大<f<無限大)に渡って積分したものは,実はx(t)の全エネルギーになるという有名な定理(Parsevalの定理)があります.

ということは,このときの被積分関数|X(f)|^2は単位周波数あたり...続きを読む

Qパワースペクトルとは?

パワースペクトルについて説明してくださいと先生に言われました。
全くわからない人に説明するので端的にわかりやすく説明したいのですが誰かできる人はいませんか?ちなみにぼくも詳しいことは全然わかりません。
本などを見ても式があったりしてそれをまた理解することが出来ません。
なんかイメージがわくような方法はないですかね?

Aベストアンサー

スペクトルとは、独立な成分それぞれについての強さをグラフにしたものです。
光の場合、光の種類を色で分類する事ができます。光といっても、その中に青はどれくらい、オレンジはどれくらいとそれぞれの色に応じて強さがあります。
光をそれぞれに分ける方法は、たとえばプリズムがあって、光をプリズムに通すといろいろな色にわかれてみえます。

ニュートンはプリズムを使った実験で有名です。一つ目のプリズムで光を分光し、赤と青の光を残して他の光を遮り、赤と青を二つ目のプリズムやレンズで一つにまとめました。その後でもう一度プリズムを通すと、いったんまとめたのにやはり赤と青しかでてこないのです。これから光の色の独立性(赤や青は、混ざらないものとして独立に扱って良い、ということ)がわかります。

このように色にはそれぞれを別々に扱ってもよいので、色ごとに物事を考えると分かりやすくなります。この色ごとについての強度を「光のスペクトル」、といいます。
強度はふつう「時間当たりに光りが運ぶエネルギー」(パワー)で表すので、この時は「パワースペクトル」です。

こんなふうに物事を自然な「成分(光の時は色)」にわけて考えた物がスペクトルです。詳しくは座標とフーリエ成分の関係について(フーリエ変換について)勉強するといいと思います(電磁場の実空間の振動とフーリエ空間上での振動の対応として)。

スペクトルとは、独立な成分それぞれについての強さをグラフにしたものです。
光の場合、光の種類を色で分類する事ができます。光といっても、その中に青はどれくらい、オレンジはどれくらいとそれぞれの色に応じて強さがあります。
光をそれぞれに分ける方法は、たとえばプリズムがあって、光をプリズムに通すといろいろな色にわかれてみえます。

ニュートンはプリズムを使った実験で有名です。一つ目のプリズムで光を分光し、赤と青の光を残して他の光を遮り、赤と青を二つ目のプリズムやレンズで一つにま...続きを読む

Q第一章→第一節・・・その次は?

よく目次で
第一章○○○
 第一節△△△
 第二節□□□
第二章◇◇◇~
とありますよね?その第一節をさらに分けたい場合、第一何となるのでしょうか。
ご存知の方よろしくお願いします。

Aベストアンサー

たまたま手元に「公用文作成の手引き」という冊子があります。
役所で使用する文書規定の本です。

これによると、章、節、項までは皆さんのおっしゃる通り。

さらに、「項目を細別する見出し符号は以下による。」とあります。

第一章 第二章・・・
 第一節 第二節・・・
  第一項 第二項・・・
   第1 第2
    1 2 3
     (1) (2) (3)
      ア イ ウ
       (ア) (イ) (ウ)
        A B C
         (A) (B) (C)
          a b c
          (a) (b) (c)

注1:「第1」を省略して「1」からはじめても良い。
注2:「イ」「ロ」「ハ」「ニ」は用いない。


以上のように書いてありました。
しかし、何にせよ法律で決まっているわけでもないし、通常は
自分の好みで選択して、問題ないと思います。

Q「ご連絡いたします」は敬語として正しい?

連絡するのは、自分なのだから、「ご」を付けるのは
おかしいのではないか、と思うのですが。
「ご連絡いたします。」「ご報告します。」
ていうのは正しい敬語なのでしょうか?

Aベストアンサー

「お(ご)~する(いたす)」は、自分側の動作をへりくだる謙譲語です。
「ご連絡致します」も「ご報告致します」も、正しいです。

文法上は参考URLをご覧ください。

参考URL:http://www.nihongokyoshi.co.jp/manbou_data/a5524170.html

Qint型からchar型への変換

タイトル通り、int型からchar型への変換の仕方がわかりません!><
どうしたらいいのでしょうか?

Aベストアンサー

#include <stdio.h>


char buf[5];
int no;

no = 10;
sprintf(buf, "%d", no);

Q偏微分の記号∂の読み方について教えてください。

偏微分の記号∂(partial derivative symbol)にはいろいろな読み方があるようです。
(英語)
curly d, rounded d, curved d, partial, der
正統には∂u/∂x で「partial derivative of u with respect to x」なのかもしれません。
(日本語)
ラウンドディー、ラウンドデルタ、ラウンド、デル、パーシャル、ルンド
MS-IMEはデルで変換します。JIS文字コードでの名前は「デル、ラウンドディー」です。

そこで、次のようなことを教えてください。
(1)分野ごと(数学、物理学、経済学、工学など)の読み方の違い
(2)上記のうち、こんな読み方をするとバカにされる、あるいはキザと思われる読み方
(3)初心者に教えるときのお勧めの読み方
(4)他の読み方、あるいはニックネーム

Aベストアンサー

こんちには。電気・電子工学系です。

(1)
工学系の私は,式の中では「デル」,単独では「ラウンドデルタ」と呼んでいます。あとは地道に「偏微分記号」ですか(^^;
その他「ラウンドディー」「パーシャル」までは聞いたことがあります。この辺りは物理・数学系っぽいですね。
申し訳ありませんが,あとは寡聞にして知りません。

(3)
初心者へのお勧めとは,なかなかに難問ですが,ひと通り教えておいて,式の中では「デル」を読むのが無難かと思います。

(4)
私はちょっと知りません。ごめんなさい。ニックネームは,あったら私も教えて欲しいです。

(2)
専門家に向かって「デル」はちょっと危険な香りがします。
キザになってしまうかどうかは,質問者さんのパーソナリティにかかっているでしょう(^^

*すいません。質問の順番入れ替えました。オチなんで。

では(∂∂)/


このQ&Aを見た人がよく見るQ&A

人気Q&Aランキング

おすすめ情報