解説が詳しく、見開き(左ページが問題で、右ページが解説)タイプで、数学A,B,C,(1),(2),(3)全部収録されている問題集を探しています。教えて下さい。受験
まで、1年2カ月切っちゃいました。。。。。。。。。。えーーーーん。CRY.CRY.CRY.

このQ&Aに関連する最新のQ&A

A 回答 (2件)

つまり、プログラム学習がしたいのだね。



計算問題ならそれも出来る。しかし受験に役立つ知識は長いからな、たぶん無いでしょう。しかしそれに似たような問題集があります。
この問題集は相当な技量の持ち主しか読むのを許されない。喩えれば、一刀を使えん者に弐刀は使えないのと同じである。中にはこの本を読まなくても「俺は面しか打たねえ」的な剣士もいるかもしれない。しかし、百戦錬磨のつわものを相手にするには数百、数千の技があって初めて戦えるのである。
俺は面しか打たねえなどと言ってて勝てるのはアニメの中だけであることを肝に銘じて欲しい。

「大学への数学 数学ショートプログラム」という本だ。
定価:本体1000円+税だ。
一言で言えばテクニック書である。学校では教えてくれないあんなことやこんなことまで教えるすごい本である。また、受験に受かるための技を90%ぐらい載せているとも言えよう。だが、薄い本であるので密度が非常に濃い。最期までくどくどしないで読めるのは幾人いるか。
範囲は数(1),(2),A,Bである。だから高2でも読める。数(3)は入試では計算か面積、体積などで、特に重要なテクはない。あるとしたら数(1),(2),A,Bがらみだ。
あとは数Cだな。新課程では行列といろいろな曲線だったな。区分求積法の理解は置換積分などの理解にはかかせないので学んでおくとよい。
行列はよほどひねくれた学校以外は、計算だけ。逆行列を使った連立方程式の解は便利なので覚えておく。曲線は数3がらみで美味しい問題が作れそうだがあまり無い。たしかカージオイドなんかは式も図形も簡単なので面積を求める問題があったと思う。
以上
    • good
    • 0
この回答へのお礼

詳しい説明有難う。

お礼日時:2002/02/24 14:40

KaitoTVGAMEKOZOUさんも書いてますが、大学への数学は確かにいいですよ。


ただし、月刊のものではなく、ハードカバーのやつですね。

後はチャートなんかもいいと思います。

ただ問題は、あなたの目標レベルによって、
最適な問題集が違うということです。
IIICまで勉強するのだから理系でしょうが、
理系といってもピンきりだと思うのですが。

その点、チャートは習得度別になっているのでお勧めです。

この回答への補足

やはり青チャートですか。

補足日時:2002/02/24 15:03
    • good
    • 0

お探しのQ&Aが見つからない時は、教えて!gooで質問しましょう!

このQ&Aを見た人が検索しているワード

このQ&Aと関連する良く見られている質問

Q2,7,1,4,7,2,8,1,4,1,6,..

初項を2、第2項を7とします
すべての項は一桁とします。
隣り合う項をかけてその結果を数列の最後につけていくとします
(説明が下手でごめんなさい。。。)
つまり
2,7,1,4,7,2,8,1,4,1,6,...
といった具合です。
これが6を無限個含むことを示せという問題なんですが、見当がまったくつかず。。。
ちょっと思いついたのは偶数をかけるとどんな数字でも一桁目は偶数になるので、偶数は無限個あるというのだけで、、、
規則性が見えるかなとおもっていろいろ書き出したのですが、何もわからず。。。

ヒントでもいいのでお願いします

Aベストアンサー

> 隣り合う項をかけてその結果を数列の最後につけていくとします
> 2,7,1,4,7,2,8,1,4,1,6,...

> といった具合です。

どういう規則なのか、さっぱり分からんですね。もしかして、この例が間違っているんじゃないでしょうか?

 仮に、この例が間違いだとして、「隣り合う項をかけてその結果を数列の最後につけていく」をやってみると
27
2.714
27.147
271.474
2714.7428
27147.42828
271474.28288
2714742.828816
27147428.2881616
が正しいのだとしましょう。("."は掛け算をやった位置を表しています)

 さて、「数列には6が高々有限個しか現れない」と仮定すると、数列のある場所N項目から以降には6が一つもないような、そういうNが存在しなくてはならない。

 一方、数列中にひとたび(1616)が現れると、それより後ろに(666)が出て来る。
 (666)が現れると、それより後ろに(363636)が出て来る。
 (363636) が現れると、それより後ろに (1818181818) が現れ、さらにその後ろに (888888888) が現れ、さらにその後ろに(6464…6464) が出て来る。
 (6464…6464) が現れると、それより後ろに (2424…24) が現れ、さらにその後ろに (88…8) が現れ、さらにその後ろに (6464…6464) が出て来る。
 (6464…6464) が現れると、それより後ろに (2424…24) が現れ、さらにその後ろに (88…8) が現れ、さらにその後ろに (6464…6464) が出て来る。
  :
 ループです。つまり、どこまで行っても、それより後ろに(6464…6464)という部分が必ず存在する。

 だから、「数列のある場所N項目から以降には6が一つもないような、そういうN」は存在しない。
 

> 隣り合う項をかけてその結果を数列の最後につけていくとします
> 2,7,1,4,7,2,8,1,4,1,6,...

> といった具合です。

どういう規則なのか、さっぱり分からんですね。もしかして、この例が間違っているんじゃないでしょうか?

 仮に、この例が間違いだとして、「隣り合う項をかけてその結果を数列の最後につけていく」をやってみると
27
2.714
27.147
271.474
2714.7428
27147.42828
271474.28288
2714742.828816
27147428.2881616
が正しいのだとしましょう。("."は掛け算をやった位置を表しています)

 さ...続きを読む

Qにゃんこ先生の自作問題、1,2,2,3,3,3,4,4,4,4,5,…の一般項をガウス記号を用いて書くには?

にゃんこ先生といいます。

1,2,2,3,3,3,4,4,4,4,5,…
という群数列の一般項を、ガウス記号などを用いて書くとどうにゃるのでしょうか?
a[n]=k
とすると、
第k群の最後の項は、
1+2+…+k=k(k+1)/2
より第k(k+1)/2項にゃので、
(k-1)k/2 < n ≦ k(k+1)/2
をkについて解けばいいのですが、具体的にはどうかけるのでしょうか?

また、
1,2,2,3,3,3,3,4,4,4,4,4,4,4,4,5,…
という群数列の一般項を、ガウス記号などを用いて書くとどうにゃるのでしょうか?

Aベストアンサー

※再訂正
ANo.1の結果
  An = k = [k] = [1 + √(8n - 7)]
   訂正 ⇒ An = [(1 + √(8n - 7))/2]

※追加
Excelで確認してみました.第16項まで表示しています.
○1つ目の群数列
n  (-1 + √(8n + 1))/2   (1 + √(8n - 7))/2    An
1      1            1            1
2      1.562          2            2
3      2            2.562          2
4      2.372          3            3
5      2.702          3.372          3
6      3            3.702          3
7      3.275          4            4
8      3.531          4.275          4
9      3.772          4.531          4
10      4            4.772          4
11      4.217          5            5
12      4.424          5.217          5
13      4.623          5.424          5
14      4.815          5.623          5
15      5            5.815          5
16      5.179          6            6

○2つ目の群数列
n   log(n + 1)/log2      log2n/log2       An
1      1            1            1
2      1.585          2            2
3      2            2.585          2
4      2.322          3            3
5      2.585          3.322          3
6      2.807          3.585          3
7      3            3.807          3
8      3.170          4            4
9      3.322          4.170          4
10      3.459          4.322          4
11      3.585          4.459          4
12      3.700          4.585          4
13      3.807          4.700          4
14      3.907          4.807          4
15      4            4.907          4
16      4.087          5            5

切り上げの関数を用いれば,左側でも表せますね.

※再訂正
ANo.1の結果
  An = k = [k] = [1 + √(8n - 7)]
   訂正 ⇒ An = [(1 + √(8n - 7))/2]

※追加
Excelで確認してみました.第16項まで表示しています.
○1つ目の群数列
n  (-1 + √(8n + 1))/2   (1 + √(8n - 7))/2    An
1      1            1            1
2      1.562          2            2
3      2            2.562          2
4      2.372          3  ...続きを読む

Qにゃんこ先生の自作問題、Σ[a≠b,b≠c,c≠a, a,b,c∈{1,2,3,…,n}]abc

にゃんこ先生といいます。

a,b,c∈{1,2,3,…,n}
とします。

Σ[a≠b]ab
={Σ[k=1~n]k}^2 - Σ[k=1~n]k^2
={n(n+1)/2}^2 - n(n+1)(2n+1)/6
=n(n+1)(3n^2-n-2)/12

Σ[a<b]ab
=(1/2)Σ[a≠b]ab
=n(n+1)(3n^2-n-2)/24

Σ[a≦b]ab
=Σ[a<b]ab + Σ[a=b]ab
=n(n+1)(3n^2-n-2)/24 + n(n+1)(2n+1)/6
=n(n+1)(3n^2+7n+2)/24

ですが、
Σ[a≠b,b≠c,c≠a]abc

Σ[a<b<c]abc

Σ[a≦b≦c]abc
また、それらをm変数に拡張したものはどういった公式ににゃるのでしょうか?
にゃにかうまい考えがある気がするのですが、思いつきません。

Aベストアンサー

>それらをm変数に拡張したものはどういった公式ににゃるのでしょうか?

m変数に拡張したものは、次のようになりました。

f(n,m)=Σ[a[1]≦a[2]≦…≦a[m]](a[1]*a[2]*…*a[m]) とすると、
f(n,m)=S(n+m,n).
(S(n,k)は第二種スターリング数)
http://mathworld.wolfram.com/StirlingNumberoftheSecondKind.html

計算例:
f(n,10)
=(99*n^9+1485*n^8+6930*n^7+8778*n^6-8085*n^5-8195*n^4+11792*n^3
-2068*n^2-2288*n+768)*(n+10)!/(367873228800*(n-1)!)


g(n,m)=Σ[a[1]<a[2]<…<a[m]](a[1]*a[2]*…*a[m]) とすると、
g(n,m)
=(-1)^m*s(n+1,n-m+1)
=(-1)^m*Σ[j=0,m]Σ[i=0,j](-1)^i/(j!)*i^(j+m)*comb(j,i)*comb(j+n,j+m)*comb(n+1+m,m-j).
(s(n,k)は第一種スターリング数)
http://oshiete1.goo.ne.jp/qa3563977.html
http://mathworld.wolfram.com/StirlingNumberoftheFirstKind.html

計算例:
g(n,10)
=(99*n^9-594*n^8-1386*n^7+6468*n^6+14091*n^5-12826*n^4-44132*n^3
-18392*n^2+14432*n+7680)*(n+1)!/(367873228800*(n-10)!).


h(n,m)=Σ[1≦i<j≦m をみたす全てのi,jに対してa[i]≠a[j]](a[1]*a[2]*…*a[m])
とすると、
h(n,m)=(m!)*g(n,m).

>それらをm変数に拡張したものはどういった公式ににゃるのでしょうか?

m変数に拡張したものは、次のようになりました。

f(n,m)=Σ[a[1]≦a[2]≦…≦a[m]](a[1]*a[2]*…*a[m]) とすると、
f(n,m)=S(n+m,n).
(S(n,k)は第二種スターリング数)
http://mathworld.wolfram.com/StirlingNumberoftheSecondKind.html

計算例:
f(n,10)
=(99*n^9+1485*n^8+6930*n^7+8778*n^6-8085*n^5-8195*n^4+11792*n^3
-2068*n^2-2288*n+768)*(n+10)!/(367873228800*(n-1)!)


g(n,m)=Σ[a[1]<a[2]<…<a[m]](a[1]*a[2]*…*a[m...続きを読む

Q何で数学I,II,III,IV,V,VIとか数学A,B,C,D,E,FじゃなくてI,II,IIIとA,B,Cなの

高校の数学についてのかなり阿呆な疑問なのですがなぜ数学I,II,III,IV,V,VIとか数学A,B,C,D,E,Fとかに統一しないで数学I数学A数学II学B数学III数学Cという風に区別されているのですか。
ところで自分はそんなに頭が良くないので優秀な回答を頂いても全く理解できない事も予想されます。
そういう場合は笑って許してください(汗)。

Aベストアンサー

>まーたぶん大した意味はないと思いますよ
ところが大ありなんですね。
既出の回答とも少し重なりますが,補足を兼ねてお答えしましょう。

現在の指導要領には次のような規定があります(来年の高校1年生から少し変わります)。
(1)「数学II」、「数学III」を履修させる場合は、「数学I」、「数学II」、「数学III」の順に履修させること。
(2)「数学A」については「数学I」と並行あるいは「数学I」に続いて履修させ、「数学B」及び「数学C」については「数学I」を履修した後に履修させること。
文部(科学)省は,「高校で数学を学ぶうえで中心(コア)となるもの」を易しいほうからI→II→IIIと配置し,それ以外をいわばオプションとしてA~Cとしたように思われます。

さらに,I~IIIとA~Cには非常に大きな違いがあります。

たとえば数学Iの内容は,もし学ぶのであればその内容(二次関数・三角比・場合の数・確率)を全部学ばないと,単位がとれません。数学II,数学IIIも同様です。
これに対して,数学Aは,数と式・平面幾何・数列・コンピュータの四単元からなっていますが,指導要領では「履修する生徒の実態に応じて、内容の(1)から(4)までの中から適宜選択させるものとする。」となっており,学校によって扱いはまちまちです。
コンピュータ(BASICのプログラミング)を省いている学校も結構ありますし,また参考書でも飛ばされていたりします。
(ところが入試だとプログラミングがある意味では一番易しいので,それを狙っていこう!という参考書もあったりします)
BやCも同様で,学校により扱いが異なります。

以上より,次のようなことが言えます。
たとえば,ある生徒が「学校で数学IIを習った」といっていれば,数学Iと数学IIの内容は全て授業でやっているはずです。
ところが,「数学Aを習った」というだけでは,実際に何を習っているかは分かりません。
このため,大学入試でも,数学A・B・Cはたいてい,それぞれの単元に対応する問題を並べておいてそのなかから選んで答えさせるようになっています。

No.2のカリキュラムは,1981年度に高校に入学した人までが学んだものです。
当時は,いわゆる受験校(進学校)の場合,おおまかにみて,
入試で数学を使わない人:「数学I→数学IIA」
数学を使う文系の人:「数学I→数学IIB」
理系の人:「数学I→数学IIB→数学III」
というパターンでカリキュラムを組んでいる学校が多かったように思います。
翌年登場したのが,「数学I」「基礎解析」「代数幾何」「確率統計」「微分積分」という科目分けで学んでいます。
その次(92年度入学者以降)に登場したのが現行のI~III,A~Cです。

>まーたぶん大した意味はないと思いますよ
ところが大ありなんですね。
既出の回答とも少し重なりますが,補足を兼ねてお答えしましょう。

現在の指導要領には次のような規定があります(来年の高校1年生から少し変わります)。
(1)「数学II」、「数学III」を履修させる場合は、「数学I」、「数学II」、「数学III」の順に履修させること。
(2)「数学A」については「数学I」と並行あるいは「数学I」に続いて履修させ、「数学B」及び「数学C」については「数学I」を履修した後に履修させること。
文部(科学...続きを読む

Qx1=(1,1,1),x2=(1,1,-1),x3=(1,-1,-1)をC^3の基底,{y1,y2,y3}がその双対基底でx=(0,1,0)の時,y1(x),y

[問] ベクトルx1=(1,1,1),x2=(1,1,-1),x3=(1,-1,-1)をC^3の基底とする。
{y1,y2,y3}がその双対基底でx=(0,1,0)の時、
y1(x),y2(x),y3(x)を求めよ。

という問題の解き方をお教え下さい。

双対基底とは
{f;fはF線形空間VからFへの線形写像}
という集合(これをV*と置く)において、
V(dimV=nとする)の一組基底を{v1,v2,…,vn}とすると
fi(vj)=δij(:クロネッカーのデルタ)で定めるV*の部分集合
{f1,f2,…,fn}はV*の基底となる。これを{v1,v2,…,vn}の双対基底と呼ぶ。

まず、
C^3の次元は6(C^3の基底は(1,0,0),(0,1,0),(0,0,1),(i,0,0),(0,i,0),(0,0,i))
だと思うので上記のx1,x2,x3は基底として不足してると思うのです(もう3ベクトル必要?)。

うーん、どのようにしたらいいのでしょうか?

Aベストアンサー

>C^3の次元は6(

これが間違え.
「x1=(1,1,1),x2=(1,1,-1),x3=(1,-1,-1)をC^3の基底」
といってるんだから,係数体はRではなく,C.

あとは定義にしたがって,
dualな基底を書き下せばいいだけ.
y1(x1)=1,y1(x2)=y1(x3)=0であって
v=ax1+bx2+cx2と表わせるわけだし,
v=(v1,v2,v3)とすれば,a,b,cはv1,v2,v3で表現できる
#単なる基底変換の問題.


人気Q&Aランキング

おすすめ情報